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ABSTRACT 

This thesis applies a systems engineering approach to identify the critical issues in 

using a robot localization technique for a swarm of unmanned systems operating in an 

urban environment. It starts by presenting a concept of operations requiring data sharing 

between multiple robots operating in a confined environment, and proceeds with the 

development of a localization technique based on observing the relative position of 

neighbor vehicles and then sharing this information with them. The centroids of the 

measured positions are fed into a Kalman filter as the measurement inputs. The Kalman 

filter merges measurement data with a predicted state from a simple kinematic model. A 

simulation developed in Python is used to compare the performance of developed data-

sharing localization technique with the individual robot odometry. The simulation results 

show a significant improvement of robot localization precision while the simple odometry 

technique results with continuing growth of the estimation error. 
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EXECUTIVE SUMMARY 

This thesis uses a systems engineering approach to identify the critical factors 

necessary for the robot localization technique to satisfy the needs of an autonomous 

unmanned system in an urban operation. This is done by analyzing the problem definition 

of robot localization in detail. With the boundaries of the problem identified and the 

stakeholders analyzed, a set of requirements for the system is defined. By performing 

functional analysis, the vital functions of robot localization can be determined. To this end, 

the concept of operation of a data-sharing robot localization was designed. 

The data-sharing robot localization technique designed involves a robot measuring 

the position of its peers and sharing out the information. The centroid of the measured 

position data are fed into a Kalman filter as the measurement inputs. The Kalman filter 

combines the measurement data with a predicted state from a kinematics model. 

A simulation developed in Python is then used to compare the performance of the 

proposed data-sharing robot localization with the individual robot odometry. The 

simulation results of the technique show promising improvements in robot localization 

when the odometry errors are significantly larger than the measurement errors. 

From experiments done using the simulation, it was seen that by increasing the 

number of robots in the group, the performance of the data-sharing robot localization 

improved. The improvement to robot localization by data sharing is greater when the 

odometry errors are bigger. However, it is noted that the measurements done by the 

observing robots are erroneous as well. Hence, when odometry errors are small, data 

sharing will actually make the performance of the robot localization worse. 
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I. INTRODUCTION 

A. BACKGROUND 

Imagine walking around a room with your eyes closed. There are obstacles like 

tables and chairs in the room. You will probably find it rather difficult to find your way 

even if you know exactly what route you need to take. It is only because we have eyes to 

tell us where we are in every movement that we are able to easily navigate in the world. 

Our eyes are constantly correcting the errors we make in our movement. The inaccuracies 

of our movement become more apparent when we try to walk in a straight line with our 

eyes closed. 

When moving around the world, a robot face the same problem. It needs sensors in 

the same way a human needs eyes to detect the inaccuracies in its movements. If a robot 

move around without feedback, it will get lost because of imperfections in the mechanisms 

enabling its movement as well as the changes that take place in a dynamic environment. 

B. MOBILE ROBOTS 

The key motivation driving the research into a mobile robot is its potential to 

replace the need for humans in the following three types of jobs: 

• dirty 

• dangerous 

• dull 

Jobs such as firefighting, search and rescue missions, toxic waste cleanup, nuclear 

power plant decommissioning, security, and surveillance and reconnaissance tasks all 

contain possible risks of human casualties. Some of these jobs involving long hours are 

simply boring. In all of these jobs, there is a desire to reduce the direct involvement of 

humans. This can be done by replacing humans with robots. 

With increased urbanization occurring across the globe, it can be expected that the 

urban operating environment is going to be the most important environment that authorities 

should pay attention to. In such an environment, when a disaster occurs, whether natural 
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or man-made, there will be a need for immediate search and rescue efforts. Such operations 

are often dangerous, labor-intensive and information-scarce. This is exactly the type of 

operation for which an autonomous robot is best suited. 

C. AUTONOMOUS ROBOT 

The autonomy of a robot depends on the extent to which the robot needs prior 

knowledge of its environment in order to complete its tasks. Autonomy can be classified 

into three classes: non-autonomous, semi-autonomous, and fully autonomous (Negenborn 

2003). 

(1) Non-autonomous  

A non-autonomous robot is completely controlled by humans remotely. The only 

intelligence possessed by the robot is the ability to interpret the commands sent by the 

operator control unit. 

(2) Semi-autonomous  

A semi-autonomous robot can either be controlled by humans or navigate by itself. 

This is useful in situations where human commands are delayed. The form of control can 

be either actual steering or in the form of a map given to the robot by the human controller. 

(3) Fully autonomous  

A fully autonomous robot is capable of fully steering itself. There is no requirement 

for human interaction in order for the robot to complete its tasks. The robot is capable of 

intelligent movement and action without any guidance externally to control it. 

The need for autonomy is largely dependent on the situation. For example, in a 

factory setting, a robot manipulator should be non-autonomous, as the operator would not 

want the robot to perform its own action. A predictable action is preferred, and it would be 

less expensive and more reliable. 

However, when the robot is performing tasks in which the operator has limited or 

no information of the exact set of actions to take, a semi-autonomous or fully autonomous 

robot should be used. 
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D. ROBOT NAVIGATION 

Robot navigation is the task of an autonomous robot moving from one point to 

another. The ability to navigate is important for any mobile entity. Avoiding dangerous 

situations like unsafe conditions or collisions is important; however, if a robot’s goal is to 

get to a specific spot, it would still have to find that place. Therefore, this problem can 

generally be crafted with three questions: 

• Where am I? For a robot to make any decisions to move, it first has to 
determine where it is in its own frame of reference. This is usually called 
robot localization (Negenborn 2003). 

• Where am I going? For a robot to complete any task, it has to know where 
to go to. This is the goal of the robot, and it is usually called goal 
recognition (Negenborn 2003). 

• How do I get there? When a robot knows where it needs to go to and it 
knows its own position, the robot needs to find a way to get to its goal. 
This task is usually called path planning (Negenborn 2003). 

E. ROBOT LOCALIZATION 

This thesis focuses on the first question in robot navigation, which is the robot 

localization problem. Some authors consider the robot localization problem to be the most 

fundamental problem in providing a robot with truly autonomous capabilities (Cox 1990). 

The problem of localization is that of learning the spatial model of the robot’s surrounding 

environment. 

In order to sense its surroundings, the robot has to possess sensors to perceive the 

world. Sensors that are commonly used include sonar, laser, infrared range finders, 

cameras, radar, tactile sensors, compasses, and the Global Positioning System (GPS).  

Robot localization can be loosely grouped into two categories, external robot 

localization and internal robot localization. In external robot localization, there is a need 

for additional supporting infrastructure such as external sensors or external localization 

reference. External sensors can include cameras or infrared sensors, and external 

localization reference can include radio beacons, LED emitters, ceiling projection, or GPS. 

External robot localization techniques have the advantage of providing “ground truth;” 

hence, the perceived position of the robot does not drift over time. However, the 
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disadvantage of external robot localization is that existing infrastructure has to be in place 

in order for it to work. For the case of GPS, it would not work indoors, and in times of war, 

adversaries can jam the signal and create a GPS denied area. 

Internal robot localization techniques such as simultaneous localization and 

mapping (SLAM)-based approaches are fundamental for an autonomous robot (Krajnik et 

al. 2013). They allow a robot to be truly mobile; however, the tradeoff is that these 

techniques are usually computationally intensive and the localization data are susceptible 

to drift. As such, the movement of the robot is often slow.  

F. DISTRIBUTED INTELLIGENCE 

Distributed intelligence has the objective to create systems that can collaborate in 

a way that they have the same level of performance and efficiency as human teams. These 

systems can be people, robots, computers, software agents, sensors or animals (Parker 

2008). Such systems can be very helpful in addressing the many challenges we face today 

in urban search and rescue, computer security, military operations, logistics, and many 

other activities. This is a topic of interest to this thesis since many applications of 

distributed intelligence can be leveraged in the areas of robotics and automation, as 

depicted in Figure 1. 
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Figure 1.  Applications in Distributed Intelligence, Robotics and Automation 
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When considering the various problems to be solved by robots, one approach is to 

design a single robot capable of handling all the tasks necessary to solve any problem the 

robot may encounter. However, this robot would have to be designed to have all the 

capabilities needed in order to complete the task on its own. Very often, for small-scale 

jobs, this is sufficient and feasible. 

However, when we look at the real world, many solutions to these problems involve 

teams of humans. Instead of having one human performing all the tasks alone, multiple 

humans, each with specialized skills complementing each other, work to create the 

solution. Hence, there is a motivation to think in terms of distributed systems. 

As such, distributed intelligence refers to a group of entities working as a system to 

solve problems, reason, and plan (Parker 2008). In this case, an entity is defined as any 

type of intelligent system or process. In these systems, different entities usually specialize 

in different tasks or in certain aspects of a task. 
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It can be seen from a search in the Web of Science that topics related to distributed 

intelligence have actively been researched in the last couple of years. As such, it can be 

expected that there will be many applications of distributed intelligence, specifically in 

robotics, being developed. 

Figure 2.  Web of Science Data Showing Number of Publications Related to 
Distributed Intelligence from 1990 to 2014 
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This thesis explores the idea of multiple robots assisting each other in performing 

robot localization with the hope of improving individual and overall accuracy as well as 

reducing the computational load of each individual robot. 

This thesis is organized as follows. First, the Kalman Filters is discussed in order 

to give the reader an idea how measurements and predictions of states can be merged. Next 

a system engineering approach to analyzing robot localization is done to identify the critical 

factors. With the analysis done, a concept of operation and robot localization technique is 

developed. Next the thesis elaborates on the simulation model developed to examine the 

performance of the robot localization technique developed. Thereafter, the research 

scenario used to perform the experiment in the simulation is explained and the results of 

the experiments are analyzed. Lastly the conclusions and the recommendations of the thesis 

is discussed. 

H. BENEFITS OF STUDY 

This study explores methods of improving localization data. Specifically, it helps 

provide more accurate data, reduces drift in localization data, and reduces the need for 

more computationally intensive methodology in localization. In addition, the study allows 

parameters that impact the performance of robot localization to be identified. It will also 

enable the examination of the relationship of the parameters to the performance.  
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II. KALMAN FILTERS 

A. BACKGROUND 

Generally speaking, the Kalman filter (Welch and Bishop 2006) is a recursive linear 

estimator that repeatedly generates an estimate for the state of a noisy linear dynamics 

system by minimizing the mean of the squared error. 

The state of a system in this case would be a vector x consisting of a number of 

variables that describe some properties of interest in a system. For example, the vector x 

could consist of the position and velocity of a robot.  

In the above case, the states are noisy and not easily observable. Hence, it makes 

the job of estimating the state a difficult task. In order to estimate the state, the Kalman 

filter requires a measurement of the system. The measurement has to be linearly related to 

the state. It is expected that the measurements are affected by errors. The Kalman filter 

estimator is statistically optimal with reference to any quadratic function of error in 

estimation if the errors are white noise (Mohinder and Andrews 2014). 

With data of the initial conditions, the Kalman filter estimates the state by using all 

available information of the system and the dynamics of its sensors as well as a 

probabilistic description of the noise during measurements (Fang et al. 2008). 

It has been said that in the history of statistical estimation theory, the Kalman filter 

is one of the most important discoveries (Mohinder and Andrews 2014). It has enabled 

mankind to do many things that could not have been done without it. 

B. APPLICATIONS 

The Kalman filter has been used in many different applications. One of the key 

application for the Kalman filter is the control of complex and dynamic systems such as 

the following (Mohinder and Andrews 2014). 

• aircraft 

• ships 
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• spacecraft 

• manufacturing processes 

In a dynamic system, one has to understand what the system is doing in order to 

control it. In a complex dynamic system, it is not always possible or even desirable to 

measure every variable that is to be controlled. Hence, in order to estimate the inadequate 

information from the noisy and indirect measurements, the Kalman filter can be used 

(Mohinder and Andrews 2014). 

The Kalman filter has also been used in applications where people are trying to 

predict the future state of dynamic systems that are not within their control. Such dynamic 

systems could be commodity prices that are traded, celestial bodies’ trajectories or the way 

the rivers flow in the case of a flood. 

C. CONCEPTS 

The Kalman filter is a state estimator that works by a combination of prediction and 

correction. To elaborate, the Kalman filter generates a conditional probability of the current 

state by first making predictions based on the dynamics of the system as well as the 

previous state. The prediction is later corrected using the measurements made by the 

system. 

As depicted in Figure 3 the current state estimate is projected ahead in time by the 

time update, and this projected estimate is then adjusted by an actual measurement that 

occurs at that time in the measurement update.  
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Figure 3.  Discrete Kalman Filter Cycle 

 

From Greg and Gary 2006 

1. State Estimator 

The Kalman filter’s main purpose is to attempt to estimate the actual state of a 

system, for example, the position of a mobile robot. More precisely, it estimates the state 

and provides an approximation of how inaccurate the estimate of the state is from the actual 

state. The estimation of the state is difficult because the state may change over time and it 

can be subject to noise. 

2. Conditional Probability 

Conditional probability is the robot’s internal knowledge about its own state. As 

the state cannot be measured directly, the Kalman filter estimates the conditional 

probability of being in a state kx  given all the available measurements 1,....., kz z  and 

controls 1,...., ku u . The probability of being in state kx  given the measurements 1,....., kz z

is called the estimate. We denote the estimate over the state of a variable kx by ( )kest x , as 

shown in Equation 1.  

 ( ) ( )1 1,...., , ,....,k k k kest x p x z z u u=   (1) 

The estimate can be divided into the prior estimate and the posterior estimate, where 

the posterior estimate is incorporated after the measurement kz . The Kalman filter 
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calculates a prior estimate before incorporating kz , just after incorporating the control ku . 

The prior estimate is denoted as shown in Equation 2. 

 ( ) ( )1 1 1,...., , ,....,k k k kest x p x z z u u−=   (2) 

The prior estimate is the conditional probability of being at state kx given all the 

measurements z  up to and including step 1k − . The posterior estimate is the conditional 

probability of being at state kx given all the measurements z  up to and including step k . 

Hence, in order to calculate the estimate, there is a need to formulate the functions for the 

system model ( )1k kp x x −  and the measurement model ( )k kp z x .  

3. Prediction-Correction 

In this section, the prediction and correction of the state by the Kalman filter is 

discussed. 

(1) Prediction 

The Kalman filter calculates the estimate by first computing the prior estimate 

before calculating the posterior estimate. The calculation of the prior estimate ( )kest x  can 

be considered the prediction of the state of the system after a time step. The prior estimate 

tries to estimate the most likely state of the system after one time step without looking at 

the latest measurement information. This is done using the model of the system  ( )1k kp x x −  

and the posterior estimate of what the state was in the last time step, ( )1kest x − . 

(2) Correction 

Prediction of the system state is bound to have errors due to noise in the system. As 

such, the prediction of the state of the system is likely to be different from the actual state. 

Hence, the calculation of the posterior estimate, ( )kest x , can be treated as the correction to 

the state estimate that resulted from the prediction. After the Kalman filter calculates the 

prior estimate, the new measurement data provides an indirect and noisy information of the 

actual state of the system. The new measurement can then be used to correct the predicted 
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state. This is done by using the model of the measurement ( )k kp z x . The model of the 

measurement describes how likely given a state kx that the measurement results in the 

values kz . Given the measurement data and the measurement model, the Kalman filter 

corrects the prior estimate in the state of the system. 
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III. SYSTEM ENGINEERING OF ROBOT LOCALIZATION 

This chapter uses a system engineering approach to examine the robot localization 

problem. First the problem of robot localization is defined. Next the boundaries of robot 

localization is determined. The limitations and constraints imposed on it is identified. The 

stakeholders of robot localization is then analyzed. This allows the requirements to be 

determined. The scope of the thesis is then defined before the operational concept is 

discussed. Functional analysis is then done on robot localization. Lastly the alternatives are 

considered and compared. 

A. PROBLEM DEFINITION OF ROBOT LOCALIZATION 

Essentially, the problem of robot localization is answering the question “Where am 

I?” from the robot’s perspective. 

What this means is that the robot has to determine its relative position in an 

environment. This usually means determining its x and y coordinates as well as heading in 

a global coordinate system. 

Localization is an important problem to solve as it is one of the key components in 

a successful autonomous robot. Without the robot properly determining its localization 

relative to its environment, it would be nearly impossible to decide what to do next. 

Localization may seem to ask a simple problem, but solving it is almost never easy. 

In particular with a robot, localization is highly dependent on the characteristics of the 

robot. Techniques that work well for the robot in a certain environment may fail in another 

environment. 

1. Problem 

The localization problem can be categorized into three subgroups, which are 

defined by the information that is available to the robot initially and at run-time. The three 

subgroups are the position tracking problem, global localization problem, and kidnapped 

robot problem (Zhang et al. 2009).  
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In position tracking, it is assumed that the initial pose of the robot is known. 

Determining the position of a robot with reference to a known map of the surroundings is 

then achieved by factoring in the robot’s motion to the robot’s current state (Thrun, 

Burgard, and Fox 2005). On the other hand, global localization is a problem in which a 

robot has to determine its position after being randomly placed in an environment (Thrun, 

Burgard, and Fox 2005). Hence, the robot does not have information on its initial pose. It 

can be seen that the global localization problem contains the position tracking problem and 

is therefore a more difficult problem to solve (Thrun, Burgard, and Fox 2005). 

Finally, another form of the global localization problem is the kidnapped robot 

problem. This is an even more difficult problem to solve. In this case, the robot may be 

translocated into another random position without the robot knowing. Under such a 

circumstance, the robot thinks that it knows where it is currently located, but the reality is 

that it does not. This makes it more difficult to solve than the global localization problem. 

While the robot might not be kidnapped in a real operation, its localization algorithm might 

fail. The ability to recover from failure can be measured by testing the localization 

algorithm on the kidnapped robot problem. 

2. Uncertainty 

As discussed in the previous section, robot localization can fail. A robot’s 

localization failure can be attributed to a key element of robotics: uncertainty. Uncertainty 

arises from five possible factors (Thrun, Burgard, and Fox 2005), which are the dynamic 

environment, robot’s sensors, robot’s actuators, models of the surroundings, and algorithm 

computation. 

The environment can create uncertainty as the physical world can be highly 

unpredictable, especially in a place where it is not purposefully planned out. While some 

environments can be structured in a way to reduce uncertainty, environments like homes 

and roads are highly dynamic.  

The uncertainty from the robot’s sensors is due to limitations in the sensor’s 

perception. Firstly, the performance of sensors is bound by physical laws. For example, the 

range and resolution of the sensors are subjected to these laws, and sensors like cameras 
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cannot see through walls. Secondly, sensors are also subjected to noise, which perturbs the 

measurements in unpredictable ways. 

A robot’s actuation produces uncertainty due to the use of motors, which are 

unpredictable to a certain extent. The lack of predictability can be contributed to wear and 

tear and control noise. This noise is even more significant in a low-cost robot whose motors 

are less precise. 

A robot generate models to make sense of the surroundings. However, these models 

are an abstraction of the real world and are therefore inaccurate. This is because they are 

only a partial model of the underlying physical process of the robot and the environment. 

A robot by its nature is a real-time system. This limits the number of computations 

that can be carried out per time unit. Hence, many algorithms for various functions are an 

approximation in order to achieve a timely response, which is a tradeoff for accuracy. 

B. BOUNDARIES 

In order to help scope the problem studied in this thesis, the boundaries of the 

problem have to be examined. There are many considerations when performing robot 

localization in an indoor and cluttered environment. It is only through studying the 

boundaries of such an environment that engineers can understand the complexity of the 

task. 

There are, in essence, three basic classifications of boundaries. They are physical, 

functional, and behavioral boundaries. These boundaries lead to limitations and 

constraints, as well as boundary conditions of a system. Identifying and grouping the 

boundaries can help engineers better understand the problem and add more dimension to 

the perspective. 

1. Physical 

The physical boundary is determined by the limits of matter of one object. In robot 

localization, the physical boundaries can include parts of the robot or objects in its 

environment. Examples of physical boundaries can be seen in Table 1. 
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Table 1.   Physical Boundaries 

Physical boundary Description 
Fixed obstacles in an 
environment 

Fixed obstacles prevent movement to certain areas. They can 
also block sensors’ line of sight. These can be walls or objects 
like tables or boulders in an operational environment. 

Dynamic obstacles in 
an environment 

Dynamic debris are similar to fixed obstacles; however, their 
position or state can change during the course of the robot’s 
operation. These can be objects that are moved around or doors 
that can be opened or closed. 

Computers used in a 
robot 

The computation demands of the robot determine the size and 
weight of the computer the robot uses. This can impact the 
power requirements, which, in turn, affect battery size and 
weight. 

Robot’s actuator The actuator is the mechanism that affects the robot’s 
movement. This leads to how the robot moves and the errors 
that the robot can make in movements. 

Ground the robot 
traverses 

The type of ground the robot is traversing determines what kind 
of mobility methods are used. This leads to types of errors 
made in movement. 

Robots operating in 
the area 

Other robots operating in the same area can behave like 
dynamic obstacles. They have the properties of an obstacle and 
are dynamic in that they can move around. 

People operating in 
the area 

People who are in the operating area can interfere with robot 
localization by acting like dynamic obstacles. 

Buildings in an 
environment 

Buildings are like fixed obstacles; however, the robot can 
operate inside or beside buildings. They have the properties of 
fixed obstacles. Buildings can impact things like the GPS 
signal, rendering it ineffective. Wireless communications can 
be negatively impacted by buildings by causing destructive 
interference. 

 

2. Functional 

The functional boundary is determined by two objects and their interfaces. A  

functional boundary is formed at the interface of objects. Through examining the functional 

boundary, the interactions between objects can be observed, as seen in Table 2. 
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Table 2.   Functional Boundaries 

Functional boundary Description 
Mobility of a robot The robot can move using wheels, tracks, legs, or flight. This 

results in different types of interactions with the environment 
and, hence, different kinds of errors. If it is a ground robot, the 
traction with the ground is a factor for consideration. 

Robot sensing its 
surrounding 

The robot employs sensors to measure obstacles in its 
surroundings. The types of surfaces in the surrounding can 
cause different results. The robot’s ability to sense its 
surroundings is necessary for it to successfully navigate its 
environment. 

Computation of 
algorithms 

The computation of algorithms to perform certain tasks is a 
boundary in the sense that there are limits to the computational 
power the robot can carry due to the fact that higher 
computation power means bigger, heavier processors and 
larger power consumption. This defines what kind of 
computational task the robot can take on. 

Mapping of the 
environment 

The function of mapping the environment is dependent on the 
task requirements of the robot. However, if mapping is 
necessary for the robot to perform its mission, then it sets 
certain conditions on the sensors. For example, the resolution 
of the sensor becomes critical to whether the data collected can 
be transformed into a map. 

Use of a coordinate 
system 

The robot’s frame of reference is important when there is 
communication between multiple robots. The coordinate 
system has to allow the robot to communicate pose information 
with a common frame of reference in order for the robot to 
uniquely orient and locate the pose in discussion. 

Modelling the 
physical world 

Whenever the robot senses its surroundings using sensors, it 
has to model these surroundings based on the numerical data 
derived from the sensors. How accurately and precisely the 
robot can model the surroundings from the data affects the 
tasks the robot can do. For example, for the robot to simply 
avoid collision with a wall, it may not need a high fidelity 
model of the surroundings, but if it needs to plan a route 
through an area with debris scattered around, a higher fidelity 
model may be required. 

 

3. Behavioral 

Behavioral boundaries exist due to the existence and interaction between the 

physical and functional boundaries. Behavioral boundaries can be changed when the 

physical or functional boundaries are changed. These are outlined in Table 3. 
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Table 3.   Behavioral Boundaries 

Behavioral boundary Description 
Choice of robotics 
applications 

Dependent on the accuracy of the robot localization, the choice 
of applications suitable for the robot can change. Robotics 
developers may only be restricted to certain application for a 
robot when the accuracy of robot localization is low. 

Indecisive robot 
movement 

If the robot localization data is inconsistent, the robot 
movement can appear to be indecisive. The robot’s action is 
dependent on the data is has. The desired action of the robot 
can change rapidly if the data it obtains changes rapidly. 

Missing or incorrect 
sensor data 

If during the course of operation, the sensors are hit by some 
failure resulting in delayed data or incorrect data, the robot 
localizes itself using this data. The result is that the robot may 
think it knows where it is, but in fact, it is somewhere else. The 
robot acts on where it thinks it is at and, hence, behaves in a 
manner that is not expected. 

C. LIMITATIONS AND CONSTRAINTS 

This section discusses the limitations and constraints that are imposed on robot 

localization. 

1. Limitations 

Robot localization is plagued with several limitations that affect how successful a 

robot is in determining its location. Table 4 includes a discussion of the identified 

limitations. 

Table 4.   Limitations of Robot Localization 

Limitations Description 
Uncertainty in 
environment 

The environment is expected to be dynamic. Changes can 
occur to the environment after the robot has sensed and mapped 
the area. This dynamism of the environment poses a big 
challenge, as it burdens the sensor measurements with another 
inconsistency that has to be explained. For example, if the 
robot faces an open door that was previously modelled as 
closed, the robot has to decide if the environment has changed 
or if it is not where it is supposed to be. Frequently in robotics, 
the world is assumed to be unchanging, with the robot itself the 
only thing that varies over time (Thrun 2002). 
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Uncertainty in 
sensors 

Sensors measure an approximation of what actually is. This 
approximation is bound to include errors. The range and 
resolution of the measure is also subject to the laws of physics. 
The data that the sensors provide are discrete numbers; hence, 
there will be truncation of the actual measurements that took 
place. The robot can only sense what it can sense. In a complex 
environment, there are frequently parts of the surroundings that 
are occluded from the robot’s sensors, thereby reducing the 
information the robot has to work with. 

Uncertainty in a 
robot 

The actuators that move the robot are also unpredictable to a 
certain extent. This is due to control signal noise and wear and 
tear. For a low-cost robot, this can be expected to be even more 
prevalent. Therefore, it is not possible to track a robot’s 
position by only keeping track of the movement commands that 
have been issued to it.  

Uncertainty in 
models 

Localization computation is based on certain models of the 
sensors and robot. The models are an abstraction of the real 
world, and it is only possible to partially model the underlying 
physics of the robot and its environment. 

Uncertainty in 
computation 

For a robot to be functional, it has to be a real-time system. 
This limits the amount of time the robot has to process all the 
information that it consolidates from its sensors. In order to 
limit the time of processing the information, it has to limit the 
amount of computation that can be carried out. As such, there 
is generally a sacrifice of accuracy in order to achieve a timely 
response. 

Statistically 
dependent errors 

If measurement errors are statistically independent, the effects 
of errors can be negated simply by taking a lot of 
measurements. However, in robot localization, the errors in 
estimating location are statistically dependent. This is due to 
the fact that errors that are made in the past compounds with 
the errors made now. Hence the errors accumulates over time. 

High dimensionality 
of problem 

In a two-dimensional representation of the environment, a 
robot requires thousands of numbers. When it comes to a three-
dimensional representation of the environment, there are easily 
millions of numbers the robot has to track. Statistically 
speaking, every one of the numbers adds a dimension to the 
fundamental problem. 

 

2. Constraints 

In robot localization, due to the type of robotics application, there are design 

constraints on the robot hardware as well as the software. These constraints on the robot in 
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turn impose constraints on the robot localization, be it algorithm complexity or supporting 

hardware like sensors. These are examined further in Table 5. 

Table 5.   Constraints of Robot Localization 

Constraints Description 
Algorithm 
complexity 

Robot localization can occur in many forms, some more 
computationally intensive than others. However, in many 
robotics applications, onboard processors are limited by space, 
weight, and power constraints; hence, localization algorithm 
complexity is a constraint in terms of computational load. 

Lack of external 
supporting 
infrastructure 

For a robot to be truly mobile and not be confined to a fixed site, 
the subsystem affecting the robot’s ability to perform 
localization has to be onboard the robot. This imposes the 
constraint that the localization technique cannot use any 
external sensors or infrastructure. 

Lack of GPS support In many robotics applications, the area of operations is 
frequently indoors or under a canopy. As such, the signal from 
the GPS is unable to reach the robot. In cases where the area of 
operations is an urban environment, even if the robot is not 
indoors, the presence of many tall buildings will also deflect the 
GPS signal. When it comes to military applications, in wartime 
situations, the GPS signal can also be jammed. Hence, by 
placing the constraint of not using GPS in the robot localization, 
it creates a more robust system that is not constrained to outdoor 
operations. 

 

D. STAKEHOLDER ANALYSIS 

Stakeholders are any party that have a right, claim, or share in a system. The 

characteristics of the system affects the party’s needs and expectations. In this section, we 

identify the stakeholders in robot localization and describe their needs. 

1. Robot Developers 

The first stakeholders in robot localization are robot developers. This group is 

responsible for developing a variety of robot types, including mobile factory robots, search 

and rescue robots, military urban robots, and military robotic pack mules. 
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a. Mobile Factory Robot 

For robot developers developing a mobile robot for use inside a factory, the 

challenge to robot localization is that the robot is operating indoors. As such, the robot does 

not have access to a GPS signal that can help it determine its position. While it is possible 

to place markers around the factory that the robot can use to locate itself, there is a limit as 

to how pervasive the markers are allowed to be. There will likely be a need for a robot to 

track its own positions between markers. External sensing is an option to track robot 

positions. However, such a sensor infrastructure can be very expensive, and it may not be 

scalable. 

In a factory setting, it can be expected that there will be multiple robots working 

within line of sight of one another. This provides a setting where robot collaboration is 

possible. Even if the robots’ exact position with respect to the factory is not known, 

knowing their position with respect to other robots can still be very useful. This allows the 

robots to prevent collisions with one another. It also allows for the robots to move in 

formation. 

For the robot to be truly free to roam within the required area of operations, some 

form of robot localization technique where external sensors are absent has to be developed. 

b. Search and Rescue Robot 

For developers of a search and rescue robot, one of the environments that has to be 

considered is an urban indoor environment. In the case of natural disasters or war, the likely 

places that the robot is expected to be deployed are highly populated urban environments. 

In such an event, buildings may have collapsed or been damaged, and there will be a need 

to search for survivors in such areas. It would be highly risky to send a human being into 

such an environment; hence, deploying a robot would be desirable. 

Again, once the robot navigate into the building, it will lose access to GPS signals. 

The robot would have to rely on itself to perform localization. It would be a highly dynamic 

environment with no prior maps in existence. It is not possible to have any existing sensing 

infrastructure to help the robot localize. In order for the robot to operate, a robot 

localization technique would have to be developed. 
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In a search an rescue environment, there are many tight spaces and the robot face 

the likelihood of being damaged or destroyed; therefore, it is desirable to deploy many 

cheap and small robots instead of a single large, expensive robot. In order for the multiple 

cheap robots to perform complex tasks, collaboration between the robots is necessary and 

desirable. 

Similar to the factory robot, even if the search and rescue robot are unable to figure 

out its exact pose with respect to the surrounding environment, knowing its relative 

position with reference to other robots is useful. This allows the robots to effectively spread 

out, covering more areas as well as preventing collisions from taking place. 

c. Military Urban Robot 

In urban military operations, a robot can be very useful. The urban environment is 

an important operating arena for the military, yet it can be very dangerous for soldiers. In 

urban combat, a robot can be deployed to perform surveillance inside buildings where it 

would be dangerous for a soldier to enter. In such a scenario, the robot is entering an 

unknown operating area, and there is no access to a GPS signal. 

Yet, in order to ensure that the robot’s coverage of the operating area is sufficient, 

there is a need to estimate the position of the robot so it is not congested with other robots 

in any particular spot. In addition, when there is a threat detected, there is a need to identify 

the last known position in order for the operator to react to the situation. 

d. Military Robotic Pack Mule 

In military operations, a robotic pack mule can be very useful in helping soldiers 

carry more equipment without weighing down the soldiers. The robotic pack mule is 

designed to operate in different types of terrain and environments. One of the environments 

can be under a forest canopy where there is no line of sight to GPS signals. Yet for the 

robotic pack mules to move in formation, there is a need for the robots to estimate their 

position with respect to other robotic pack mules in the vicinity.  
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2. Navy Fleet 

In a Navy fleet, there is access to GPS in peacetime. However, during war, it can 

be expected that the fleet would have to operate under a GPS-denied zone. The ships may 

still be equipped with highly sensitive gyroscopes to try to track the ship’s position. 

However, without a fixed marker, any small errors in the gyroscope would add to prior 

errors, and eventually the errors would be too big to be ignored. 

Navy fleets usually operate with multiple ships. In a GPS-denied environment, it 

would be beneficial in terms of both navigation and weapons targeting if the ships were 

able to utilize one another’s data to further reduce errors in localization. 

E. REQUIREMENTS ANALYSIS 

From the various stakeholders and their needs that were defined in the previous 

section, it can be seen that while the types of operations and the goals are different, there 

are similarities in the limitations and conditions. By studying their needs using a robot 

localization technique, a set of requirements can be formulated. In addition, it is clear that 

robotics is one of the key areas that can benefit extensively from localization.  

For an individual robot, localization can be achieved by many means. Without 

external help with localization, the robot can attempt to keep track of its pose by measuring 

wheel rotation, using inertial navigation systems (INS), measuring the optical flow of the 

ground, etc. However, in all these methods, there is no means of zeroing out any drift or 

errors compounded over time, no matter how small the errors. However, in the case of 

multiple robots collaborating on a task, knowing their position in reference to other robots 

is still useful. 

By not having external infrastructure to help with the task of localization, each 

robot has to take up the computation load. The processing power of a mobile robot is 

always a limitation due to weight and power constraints. As such, localization techniques 

that do not require heavy computation is desirable. 

From the perspective of the various stakeholders discussed previously, the 

requirements for the robot localization technique include: 
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• Provide robot localization data with fewer errors than individual robot 
odometry would produce. 

• Provide relative position with reference to other robots. 

• Provide timely localization data. 

• Minimize computation requirements for generating results. 

F. SCOPE 

Scope defines the degree to which the project’s goal or purpose covers the 

boundary. It is measured by tasks that will satisfy the stakeholders of the project. The scope 

of the outcome of the project is defined by its physical, functional, and behavioral 

boundaries. 

This effort provides focus and ensures that any solutions developed will enhance 

the capabilities of the system. 

(1) Within Scope 

The scope of this thesis is to identify how, in the case of multiple robots, 

localization can be improved. Key parameters are to be identified that affect the 

performance of the localization. In this case, the sensors that facilitate localization are 

expected to provide imperfect measurements; hence, the sensors’ performance is factored 

in the analysis. 

(2) Outside Scope 

This thesis does not include the development of the robot and implementation of 

the sensors that facilitate the localization. It is assumed that the robot is able to provide the 

input parameters to facilitate the localization algorithm. This thesis also does not include 

any mission that the robot might undertake. That is, there will not be any development of 

algorithms specific to the accomplishment of any particular task other than localization. As 

such, the robot is not expected to have any navigational algorithm. This means that the 

robot do not do course correction on its path. 
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G. OPERATIONAL CONCEPT 

Ultimately, the robot localization technique developed would have to operate under 

the assumption that there are no external sensors, be it that the robot is operating indoors 

or in a GPS-denied area. The concept of operations for performing robot localization in a 

multiple robot collaborative manner is illustrated in Figure 4, each robot has an erroneous 

perceived pose of itself. Each robot makes a measurement of a relative position of all robots 

within the line of sight and then shares measurement data with them. Each robot, armed 

with measurement data of its position, then computes its most likely position using a 

Kalman filtering technique. 

Figure 4.  Concept of Operations 

Communicate data

Communicate data

Communicate data

Communicate data

 
Note: Multiple robots collaborating to measure one another’s position 

With this set-up, there is no central control with regard to robot localization. As the 

robot measure and communicate with all other robots within its line of sight, this system is 

scalable. As the number of robots increases, it can be expected that the number of 

measurements taking place will increase and the accuracy of the localization is likely to 

improve. 

H. FUNCTIONAL ANALYSIS 

A system’s functions can be partitioned to provide more detail by performing a 

functional analysis. By delineating the functions, they can then be mapped into objects that 
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can be built and integrated into the system. The output is a functional architecture, which 

is a hierarchical model of the functions performed by the system or its components. 

Here, the functional analysis is done to derive a functional decomposition of the 

robot operation. The top-level functions that constitute robot operations are defined along 

with the function of localization in order to give a view of where localization lies in a 

robot’s operation. However, further functional decomposition is only done for localization, 

which is the focus of this thesis. The functional decomposition, and descriptions are listed 

in Table 6. The functional hierarchy of the function of localization is also depicted in Figure 

5 to give a graphical view of the relationship between the functions. 

Table 6.   Robot Operations Functional Decomposition and the Corresponding 
Description (Focus is on Localization) 

S/N Function Description 

1.0 Robot operations The top-level function of a robot system 

1.1 Sensor measurement To trigger sensors and take the readings 

1.2 Goal tracking To take stock of where the robot is with respect to 
the goal of the robot 

1.3 Communication To send and receive data between the robot and 
external entities 

1.4 Actuation To set in motion a part of the robot or the robot 
itself 

1.5 Navigation To get the robot from one point to another 

1.5.1 Goal recognition To identify where the robot should go to 

1.5.2 Path planning To find a way to get the robot to the desired point 

1.5.3 Localization To determine the most likely pose of self 

1.5.3.1 Pose tracking To take note of past pose and changes in pose 

1.5.3.1.1 Speed tracking To take note of past speed and changes in speed 
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1.5.3.1.2 Direction tracking To take note of past direction and changes in 
direction 

1.5.3.1.3 System state tracking To identify system state from tracked parameters 
and take note of past state as well as changes in 
state 

1.5.3.2 System state 
prediction 

To compute the most likely state of the system 
based on the previous perceived state and the 
modelled changes of state 

1.5.3.2.1 Kinematics modelling To model the changes of the system state based on 
known information and a kinematics model 

1.5.3.2.2 Prediction computing To compute the predicted stated using the models 
generated 

1.5.3.3 System state 
measurement 

To compute the most likely state of the system 
based on measurements of system variables 

1.5.3.3.1 System variable 
measurement 

To determine a location based on measurements 
communicated to the robot by other observer 
robots. 

1.5.3.3.2 Kinematics modeling To model the system variables based on 
measurements and a kinematics model 

1.5.3.4 System state 
estimation 

To compute the most likely state of the system 
based on a combination of the predicted as well as 
measured system state 

1.5.3.4.1 Prediction and 
measurement fusion 

To merge the probability distribution function of 
the predicted and measured state to determine a 
state where the probability of the state is higher 
than either the predicted state or the measured state 

1.5.3.4.2 System state 
correction 

To correct the predicted current state to the state 
determined by the fusion 

1.5.3.4.3 System state updating To set the current state to the corrected system 
state 
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Figure 5.  Functional Hierarchy for the Function Localization 
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I. ALTERNATIVES 

There are many techniques to robot localization. Table 7 shows a few techniques 

that are used in many robotics applications. Each has its advantages and disadvantages.  
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Table 7.   Types of Robot Localization 

No. Technique Description Advantages Disadvantages 
1. Simultaneous 

Localization and 
Mapping 
(SLAM)  

This is the process 
of computing the 
current position of 
an entity within a 
map that is being 
constructed and 
updated at the 
same time. There 
are many 
algorithms 
designed to 
perform this task. 

The operation is 
not restricted to 
known areas, and it 
generates a map of 
the unknown 
surroundings. 

It requires a great 
deal of 
computational 
power to both map 
and localize at the 
same time; hence, 
powerful 
processors and 
large amount of 
memory are 
needed, which 
leads to high 
power supply 
requirements. 

2. Global 
Positioning 
System (GPS) 

This is a space-
based navigation 
system. There are 
multiple GPS 
satellites in orbit 
and as long as 4 
satellites are in the 
line of sight, the 
system is able to 
provide location 
information. 

Location data do 
not drift as errors 
in measurements 
do not compound 
on past 
measurement 
errors. 

This would not 
work indoors, 
under forest 
canopy, or in 
places with many 
high-rise 
buildings. 

3. Dead reckoning This is the process 
of computing the 
current position by 
using a previously 
determined 
position while 
factoring in 
estimated 
movement over 
time. 

It is not restricted 
to operation only 
in known areas. 
 

Errors in 
measurement 
compound; hence, 
location data drift 
over time. 
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4. Marker-based 
localization 

This involves 
placement of 
beacons or 
markers in specific 
positions in the 
area of operation 
where the robot 
can identify and 
get a fix on its 
current position. 

It does not require 
complex 
algorithms. 
Errors in 
localization do not 
compound and 
zero out whenever 
another marker 
provides new data. 

It requires existing 
infrastructure; 
hence, the system 
cannot be operated 
in any unknown 
area. 

5. External camera 
motion capture 

This involves an 
infrastructure of 
cameras placed 
around an 
operating area that 
can capture 
motion. A 
processor 
processes all of the 
captured motion 
and generates the 
location and 
trajectory data 
based on the 
entities in the area. 

It provides very 
accurate position 
and even trajectory 
data. 

It is expensive to 
set up and requires 
existing 
infrastructure; 
hence, the system 
cannot be operated 
in any unknown 
area. 
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IV. SIMULATION MODEL OF MULTI-ROBOT LOCALIZATION 

This chapter discusses about the simulation model developed to examine the 

performance of data-sharing robot localization. 

A. BACKGROUND 

For a multiple robots collaborative localization technique, there are many 

connections and much cohesion and coupling between the robots. As the number of robots 

increases, the complexity of the system increases dramatically. As such, it becomes quite 

impossible for developers to analyze the performance of the localization technique. 

However, in the development of collaborative robotics systems, there is a need to 

determine the required performance of individual robot in order for the collaborative robots 

team to produce the desired behaviors, in this case, the robot localization performance. For 

example, the choice of sensors affects the accuracy of the measurements, and the choice of 

mobility system affects the precision of the movement. The performance of these modules 

eventually affect how effective the collaborative robot localization is. 

In the development of a multiple robots system, the cost and size of the robot are 

key factors to be considered in the effectiveness of the system. Hence, it is pertinent for 

developers to consider the tradeoff between the accuracy of data and the cost, weight, and 

power requirements. Using the best sensors can produce very accurate measurements that 

allow for accurate robot localization, but doing so would also make the robot expensive 

and physically large. It would render a multiple robots system designed in this manner 

unfeasible, especially when the anticipated operating environment is a tight urban space.  

As such, there is a need for developers to analyze the performance of the robot 

localization by simulation before the development of the individual robot. Here a 

simulation is developed to model the behavior of the robot performing a collaborative robot 

localization technique. The simulation can take in different input parameters to represent 

different sensors or robots. The root-mean-square errors of the localization can be 

computed to determine the performance of the collaborative technique as compared to the 

performance when the robot individually handle its localization. 



 34 

B. APPROACH 

A simulation software was developed that models the movement of the robot by 

modelling the errors generated while moving. The individual robot odometry and data-

sharing robot localization are simulated and the results of both can be compared. A Kalman 

filter model is developed here using kinematics equations and run in the simulation. The 

components of the simulation are discussed in detail in subsequent sections. 

Figure 6 shows a snapshot of the actual computer graphics during the simulation 

with six robots. Figure 7 shows an example of simulation with twelve robots. In each 

simulation, the three key parameters are tracked. They are the actual position the robot has 

travelled, which is represented by the gray line, the perceived position from individual 

robot odometry, which is represented by the white line, and the perceived position from 

data-sharing robot localization, which is represented by the cyan line. 
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Figure 6.  Simulation of Six Robots 

 

Figure 7.  Simulation of Twelve Robots 
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1. Simulation 

For each time step, the simulation tracks and updates each simulated robot and 

generates each of the robot’s localization technique’s results. The two types of localization 

techniques are explored. The first technique is a simple individual robot odometry. The 

second technique involves each robot measuring one another’s position and sharing these 

data. This allows generating a better estimate of robot’s position. These techniques are 

outlined in Figure 8. 

Figure 8.  Flow Diagram of Simulation 

 

Start

All bots take 
measurements of each 

other

All bots share data and 
calculate centroid of 

point cloud

All bots take measured 
position data and 

update Kalman filter

All bots “physically” 
move. Dead reckoning 

occurs here

Draw on screen

Increment time unit

 

During each simulation update, every robot updates its position based on its speed 

and direction.  

The changes in the direction and position obey the Equations 3 through 7. 
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 1n n
d T
dt φ
φφ φ ε−= + × +  (3) 

 1n n
d T
dt θ
θθ θ ε−= + × +  (4) 

 ( ) ( )1 cos cosn n n n xx x v Tφ θ ε−= + × × × +  (5) 

 ( ) ( )1 sin cosn n n n yy y v Tφ θ ε−= + × × × +  (6) 
 ( )1 sinn n n zz z v Tθ ε−= + × × +  (7) 

Where, φ  is the yaw angle of the robot; θ  is the pitch angle of the robot; x  is the 

x coordinate of the robot; y  is the y coordinate of the robot; z  is the z coordinate of the 

robot; v  is the speed of the robot; T  the time interval between time steps; and ε  is a 

Gaussian distributed noise. 

It should be noted that Gaussian distributed errors are introduced to the movement 

of the robot as a way to represent slippage of the wheel with the ground, noise in the steer, 

skidding in the case of a ground robot, and wind in the case of an air robot.  

The errors in movement are modelled as zero mean Gaussian distributed noise with 

a variance of 2 2k Dσ = , where D is the distance travelled in meters and k is a constant 

representing the standard deviation of the error for every 1 meter travelled. A proper 

selection of k based on the specification of the robot is necessary for an accurate simulation. 

As the error variance is factored by the distance travelled in the period of 

consideration, the speed of the robot as well as the time step of the simulation affect the 

amount of errors that are introduced to the movement. The faster the robot is moving, the 

greater the distance travelled in each time step. Similarly, the larger the time step between 

each calculation, the greater the distance travelled. 

2. Individual Robot Odometry 

Odometry is a form of navigational dead reckoning. It uses various kinds of sensors 

to estimate change in position over time. The current position can be calculated using a 

previously determined position and advancing it by the estimated position change. It is 

used by a wheeled or legged robot to estimate its relative position compared to the original 

location. Odometry is sensitive to errors due to it being subjected to cumulative errors. 



 38 

Specific to this thesis, each robot tries to keep track of its pose individually. From 

Equations 8 through 12, it is noted that the robot perceive a perfect movement based on 

intended commands. However, the robot is unable to track the errors that occur in the actual 

movement.  

The perceived pose is tracked by each robot using Equations 8 through 12 

 

 ' '
1n n

d T
dt
φφ φ −= + ×   (8) 

 ' '
1n n

d T
dt
θθ θ −= + ×  (9) 

 ( ) ( )' ' ' '
1 cos cosn n n nx x v Tφ θ−= + × × ×  (10) 

 ( ) ( )' ' ' '
1 sin cosn n n ny y v Tφ θ−= + × × ×  (11) 

 ( )' ' '
1 sinn n nz z v Tθ−= + × ×  (12) 

Where, 'φ  is the perceived yaw angle of the robot; 'θ  is the perceived pitch angle 

of the robot; 'x  is the perceived x coordinate of the robot; 'y  is the perceived y coordinate 

of the robot; 'z  is the perceived z coordinate of the robot; v  is the speed of the robot; and 

T  is the time interval between time steps. 

As can be seen, the perceived pose tracking equation does not include the errors 

that occur in the movement. Hence, as the current perceived pose is built on the previous 

perceived pose, it can be expected that the unaccounted errors in movement would grow 

over time as the robot continues to move. 

3. Data-Sharing Robot Localization 

In the data sharing technique, each robot takes a measurement of all robots that are 

in its line of sight to estimate its position and share data. Each robot collects all the 

measurements of itself, which forms a point cloud. 

Errors are introduced in the measurement of distance as well as bearing. This is to 

simulate errors in range measurement as well as the minimum angle resolution of the 

sensor. The errors increase as the distance between the robots increases, as the errors in 

bearing measurement resulting from the minimum angle resolution of the sensor result in 
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a larger shift in perceived position. As can be seen in Figure 9 the small error in bearing 

measurement results in an error in the perceived position of the measured robot that grows 

as the distance between the two robots increases. 

It must be noted that this error is compounded by the measurer’s own erroneously 

perceived position. 

Figure 9.  Measurement Error Illustration 

Actual position
of observer bot

Actual position
of measured bot

Observer bot’s
perceived position

Error in distance
Error in bearing

Measured  bot’s
perceived position

 

As mentioned, the measurements from multiple robots on one robot result in a point 

cloud where each robot gives a slightly different perceived position of the robot. From the 

point cloud, a centroid is computed to be used as the measurement. This can be seen in 

Figure 10. 
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Figure 10.  Measurement Point Cloud Centroid Illustration 

 

The estimated position from the data-sharing techniques are then fed as 

measurements for the Kalman filter model as described in the next section. 

4. Kalman Filter Model 

The Kalman filter model is based on the kinematic equations as shown in Equations 

13 through 21. 

 
2

1 1 2k k k k
Tx x x T x− −= + +    (13) 

 1k k kx Tx x−= +    (14) 

 1k k
k

x
T

xx −−
=
 

  (15) 

Where T  is the time delta between each time step; kx  is the x axis position at time 

step k (k = 1,2,3….); kx  is the velocity along the x axis direction; and kx is the acceleration 

along the x axis direction. Similarly, 
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2

1 1 2k k k k
Ty y y T y− −= + +    (16) 

 1k k ky Ty y−= +    (17) 

 1k k
k

y
T

yy −−
=
 

  (18) 

Where ky  is the y axis position at time step k; ky  is the velocity along the y axis 

direction; and ky  is the acceleration along the y axis direction. 

For robots operating in three dimensions, 

 
2

1 1 2k k k k
Tz z z T z− −= + +    (19) 

 1k k kz z Tz−= +   (20) 

 1k k
k

z
T

zz −−
=
 

  (21) 

Where kz  is the z axis position at time step k; kz  is the velocity along the z axis 

direction; and kz  is the acceleration along the z axis direction. 

This model uses kinematic equations in all three axes in the three-dimensional 

world. This allows the simulation to include scenarios that models a flying robot or robots 

operating at different heights. If the scenario to be simulated is for ground robots all 

operating on the same plane, then the z axis can be ignored and set to 0. 

With kinematic equations for all three axes, the state equation of the proposed 

model is shown in Equation 22. 
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With the model defined in this state equation, the measurement is incorporated into 

the Kalman filter using Equation 23. 
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 (23) 

Where , ,
k k kx y zm m m are the observation data of the robot position; , ,

k k kx y zm m m
  

are 

the observation data of the robot speed in the respective directions; , ,
k k kx y zZ Z Z are the 

measurement data of the robot position; , ,
k k kx y zZ Z Z
  

are the measurement data of the robot 

speed in the respective directions; and H is the observation matrix. The observation matrix 

H translates the observation vector into the measurement vector. 

In the case of the simulation, as the observations of the robot’s state are the actual 

measurement of the robot’s state, there is no translation required; hence, H is just the 

identity matrix as shown in Equation 24.  

 

 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

H

 
 
 
 

=  
 
 
 
   (24) 

C. ASSUMPTIONS 

Any simulation is an approximation of the actual physics of the real world due to 

the complexity. Hence, some assumptions have to be made to simplify the complexity. In 

addition, the focus of this thesis is on robot localization; therefore, the implementation of 

the supporting systems are not looked at in detail. This also leads to another set of 

assumptions. The following are the assumptions when performing the simulation: 
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• The robots have perfect communication with each other. There is no loss of 
or lag in communication. 

• The robots all have synchronized time steps. This assumption can be 
mitigated in the real world by having the robots synchronize their clocks.  

• There will be errors in individual robot odometry, which can be contributed 
by sources like errors in sensors, wheel deviation, and slippage. In the 
simulation, all errors are summed up and are assumed to be zero mean white 
noise.  

• The algorithm and sensors are assumed to be developed because the focus 
of this thesis is on robot localization, and the development of the algorithm 
and sensors used by the robots for measuring each other’s position is by no 
means an easy feat and could be an entire research project in itself.  

• The line of sight of the sensors used for robot position measurement is 
assumed to be limited by range, but other robots will not obscure the line of 
sight. 

Some of these assumptions are based on complexity that is difficult to address by 

computation, while others are due to time constraints of developing the simulation. As 

such, some of the assumptions can be addressed in future work in the simulation software. 

D. SOFTWARE USED 

The time-based simulation was created using the Python scripting language. It was 

used to model the robot and the coupling between the robots. Python was used because it 

is a general purpose high-level programming language, so it offers ease of development 

while allowing the programmer freedom to develop in any way. 

Python’s design philosophy emphasizes code readability as well as allowing the 

programmer to write fewer lines of code than other languages like C++. This helps future 

programmers who wish to further the development to quickly ease into the code.  

Within the Python scripting language, the PyGame library is used to develop the 

graphical aspects of the simulation. The PyGame library is based on the Simple 

DirectMedia Layer development library.  
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V. RESEARCH SCENARIO AND RESULTS 

This chapter discusses about the performance metrics used to assess the data-

sharing robot localization technique. The approach to the experiment is examined and a 

scenario is developed to test the technique. Finally, the results of the experiment are 

analyzed. 

With the simulation software developed, this thesis proceeds to use the software as 

a tool to analyze various scenarios where multiple robots are deployed. The performance 

data of how well the robot track its position can be collected and compared. As the 

simulation software is developed to replicate the 3-dimensional space, it can be used 

simulate an air-based robot. By setting all metrics in the z direction to 0, the simulation 

software can also be used to simulate a ground-based robot. Here, the thesis conducted an 

experiment based on only ground-based robots. 

A. PERFORMANCE METRICS 

One of the key performance metrics is the root-mean-square errors of the perceived 

position as compared to the actual position. The metric can be used to compare the 

performance between a collaborative data-sharing robot localization with one where the 

robots all operate individually. 

B. APPROACH AND ASSUMPTIONS 

The simulation is based on a set of kinematic equations with noise introduced to 

the output at each time step. The input parameters and the amount of noise introduced are 

based on the scenarios considered. This is done by determining the specification of the 

robot and sensors in the scenarios and using the specifications and performance data as 

parameters in the simulation. 

In each of these scenarios, multiple robots in collaboration are central to the robot 

localization. In each case, the robots are assumed to be mobile and able to communicate 

with each other. It is also assumed that the robots are able to take measurements of each 

other’s pose. As previously mentioned in the scope of the thesis, the implementation of the 
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robot is not considered in the thesis, and it is assumed that the robot can perform the tasks 

within the simulated specifications. For example, if the robot is using laser scanning 

rangefinders, it will be able to measure other robot’s position with 1% error and up to a 

range of 30 meters. 

Multiple Monte Carlo simulations are carried out for the scenarios to examine the 

performance based on different conditions. The root-mean-square error of the localization 

results against the actual position is tracked throughout the simulation. The errors in the 

positions at the end of each simulation are tracked. The root-mean-square errors are 

tabulated in Table 9 and Table 10. The following are some general parameters of the 

simulation: 

Number of simulation runs = 1000 

Time delta per time step in simulation = 0.1 seconds 

Number of time steps per simulation run = 1000 

C. AUTONOMOUS GROUND ROBOT SCENARIO 

1. Scenario 

In this scenario, several ground robots are placed in an indoor environment of 50 

meters by 40 meters in size. The robots in this scenario are patrolling the area in a circular 

manner. Each attempts to track its own position. The robots simulated here are the Pioneer 

P3-DX, as seen in Figure 11. This model has a maximum speed of up to 1.2 meters per 

second. The Pioneer P3-DX is chosen for this scenario because it is a popular research 

mobile robot. As shown in Figure 12, the robots are retrofitted with the scanning laser 

rangefinder used to measure the relative positions of other robots. 



 47 

Figure 11.  The Pioneer P3-DX 

 

Figure 12.  Hokuyo UTM-30LX Scanning Laser Rangefinder 

 

Two variations of the simulation scenarios involved different number of robots. 

Specifically, the two simulations involved six and twelve robots respectively. This was 

done to examine the effect of the number of collaborating robots on the accuracy of the 

robot localization. 

2. Simulation Setting 

The simulation allows for various input parameters to be tuned. In this experiment, 

3 key parameters are looked at: the number of robots, the sensor performance, and the 

individual robot odometry performance. This is to identify where and how data sharing can 

help in robot localization. 

The justification for the various parameter values used in the experiment 

configurations is discussed here. For the sensor, the scanning laser rangefinder, the 

measurement performance is as follows: 

Range:   30 meters 
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Angular resolution: 0.25 degrees 

Accuracy:  +/- 30 millimeters  

For the individual robot odometry, the performance of the robot is explored with a 

variation of odometry error parameters. The errors are modelled as zero mean Gaussian 

distributed noise with variance modelled as 2 2k Dσ =   where D is the distance travelled 

in the time step and k is a constant. The constant k represents the standard deviation of the 

error for every meter travelled. For this scenario, the following values of k where chosen. 

k = 0.1, 0.01, and 0.5 

The number of robots and the speed of each robot are also set as a parameter in the 

simulation. For this scenario, the effect of the number of robots is explored in the 

simulation. The following are the configurations: 

Number of robots = 6 and 12 

The simulation is conducted in various configurations. The configurations are 

summarized in Table 8. 

Table 8.   Summary of Configurations of Input Parameter to the Various 
Simulations Run 

 
Input parameter 
configuration 

Sensor 
performance 

Odometry 
performance, k 

Number 
of robots 

Robot speed 

1 +/- 0.03m acc 
30m range 

0.01 6 Bot1 = 0.6m/s 
Bot2 = 0.6m/s 
Bot3 = 0.6m/s 
Bot4 = 0.6m/s 
Bot5 = 1.2m/s 
Bot6 = 1.2m/s 
 

2 +/- 0.03m acc 
30m range 

0.1 6 Bot1 = 0.6m/s 
Bot2 = 0.6m/s 
Bot3 = 0.6m/s 
Bot4 = 0.6m/s 
Bot5 = 1.2m/s 
Bot6 = 1.2m/s 

 



49 

3 +/- 0.03m 
acc 
30m range 

0.5 6 Bot1 = 0.6m/s 
Bot2 = 0.6m/s 
Bot3 = 0.6m/s 
Bot4 = 0.6m/s 
Bot5 = 1.2m/s 
Bot6 = 1.2m/s 

4 +/- 0.03m acc 
30m range 

0.01 12 Bot1 = 0.6m/s 
Bot2 = 0.6m/s 
Bot3 = 0.6m/s 
Bot4 = 0.6m/s 
Bot5 = 1.2m/s 
Bot6 = 1.2m/s 
Bot7 = 0.6m/s 
Bot8 = 0.6m/s 
Bot9 = 0.6m/s 
Bot10 = 0.6m/s 
Bot11 = 1.2m/s 
Bot12 = 1.2m/s 

5 +/- 0.03m acc 
30m range 

0.1 12 Bot1 = 0.6m/s 
Bot2 = 0.6m/s 
Bot3 = 0.6m/s 
Bot4 = 0.6m/s 
Bot5 = 1.2m/s 
Bot6 = 1.2m/s 
Bot7 = 0.6m/s 
Bot8 = 0.6m/s 
Bot9 = 0.6m/s 
Bot10 = 0.6m/s 
Bot11 = 1.2m/s 
Bot12 = 1.2m/s 
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6 +/- 0.03m acc 
30m range 

0.5 12 Bot1 = 0.6m/s 
Bot2 = 0.6m/s 
Bot3 = 0.6m/s 
Bot4 = 0.6m/s 
Bot5 = 1.2m/s 
Bot6 = 1.2m/s 
Bot7 = 0.6m/s 
Bot8 = 0.6m/s 
Bot9 = 0.6m/s 
Bot10 = 0.6m/s 
Bot11 = 1.2m/s 
Bot12 = 1.2m/s 
 

 

These configurations are designed to explore the effects of the different 

performances of odometry and how data-sharing can improve robot localization. The 

configurations also explore how the number of robots can impact the performance of the 

data-sharing robot localization. Lastly, the thesis examines how data sharing can counteract 

the effect of erroneous robot localization from higher robot speed. 

3. Results 

The six different configurations described in the previous section are used to run 

the simulation, and the root-mean-square errors of the positions are collected for the data-

sharing robot localization as well as the individual robot odometry. 

Table 9 shows the results for running the simulation with six robots. Table 10 shows 

the results for running the simulation with twelve robots. This table only shows the data 

for the first six robots in comparison with the six robot simulation configuration.  
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Table 9.   Root-Mean-Square Error of Data-Sharing Robot Localization and 
Individual Robot Odometry After 100 Seconds for a Six-Robot Simulation 

Averaged Among 1000 Simulation Runs 

 k = 0.01 k = 0.1 k = 0.5 
Data 
sharing 

Odometry Data 
sharing 

Odometry Data 
sharing 

Odometry 

Robot 1, 
v = 0.6m/s 

0.245 m 0.0612 m 0.378 m 0.612 m 1.492 m 3.076 m 

Robot 2, 
v = 0.6m/s 

0.245 m 0.0607 m 0.379 m 0.618 m 1.493 m 3.087 m 

Robot 3, 
v = 0.6m/s 

0.245 m 0.0612 m 0.379 m 0.614 m 1.492 m 3.126 m 

Robot 4, 
v = 0.6m/s 

0.246 m 0.0608 m 0.379 m 0.610 m 1.494 m 3.070 m 

Robot 5, 
v = 1.2m/s 

0.246 m 0.0857 m 0.381 m 0.876 m 1.501 m 4.355 m 

Robot 6, 
v = 1.2m/s 

0.245 m 0.0898 m 0.379 m 0.864 m 1.498 m 4.291 m 

 

Table 10.   Root-Mean-Square Error of Data-Sharing Robot Localization and 
Individual Robot Odometry After 100 Seconds for a Twelve-Robot 

Simulation Averaged Among 1000 Simulation Runs 

 k = 0.01 k = 0.1 k = 0.5 
Data 
sharing 

Odometry Data 
sharing 

Odometry Data 
sharing 

Odometry 

Robot 1, 
v = 0.6m/s 

0.105 m 0.0611 m 0.236 m 0.624 m 1.059 m 3.103 m 

Robot 2, 
v = 0.6m/s 

0.105 m 0.0623 m 0.236 m 0.624 m 1.059 m 3.128 m 

Robot 3, 
v = 0.6m/s 

0.105 m 0.0607 m 0.236 m 0.624 m 1.059 m 3.185 m 

Robot 4, 
v = 0.6m/s 

0.106 m 0.0609 m 0.237 m 0.624 m 1.059 m 3.068 m 

Robot 5, 
v = 1.2m/s 

0.106 m 0.0871 m 0.239 m 0.882 m 1.070 m 4.321 m 

Robot 6, 
v = 1.2m/s 

0.105 m 0.0879 m 0.238 m 0.869 m 1.069 m 4.422 m 
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As seen in Table 9 and Table 10, the improvement to robot localization by data 

sharing is not a constant across the different configurations of simulation. Table 11 shows 

the ratio of the data-sharing robot localization root-mean-square error against individual 

robot odometry root-mean-square error. This shows how data sharing affects the overall 

localization. 

Table 11.   Ratio of Root-Mean-Square Error of Data-Sharing Robot 
Localization Over Root-Mean-Square Error of Individual Robot Odometry 

 Error reduction of data-sharing robot localization over individual 

robot odometry 

 k = 0.01 k = 0.1 k = 0.5 

 six robots 

simulation 

twelve 

robots 

simulation 

six robots 

simulation 

twelve 

robots 

simulation 

six robots 

simulation 

twelve 

robots 

simulation 

Robot 1, 
v = 0.6m/s 4.000 1.723 0.619 0.378 0.485 0.341 

Robot 2, 
v = 0.6m/s 4.041 1.692 0.613 0.379 0.484 0.339 

Robot 3, 
v = 0.6m/s 3.999 1.738 0.617 0.379 0.477 0.332 

Robot 4, 
v = 0.6m/s 4.041 1.743 0.623 0.379 0.487 0.345 

Robot 5, 
v = 1.2m/s 2.867 1.217 0.435 0.270 0.345 0.247 

Robot 6, 
v = 1.2m/s 2.727 1.200 0.439 0.274 0.349 0.241 

Note: The data of the above table is derived by dividing the root-mean-square error of the 
data-sharing robot localization by the root-mean-square error of the individual robot 

odometry. 
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Several observations can be made from the simulations conducted. They are as 

follows: 

• Higher robot speed results in more errors in individual robot odometry due 
to the greater distance travelled in the time frame of the simulation. 

• However, data sharing results in similar levels of error in robot 
localization regardless of the robot’s speed. 

• Data-sharing robot localization performance is worse than individual robot 
odometry when k = 0.01. Hence, if odometry errors are very small, 
measurement errors can cause more errors to localization via data sharing, 
and data-sharing robot localization should not be applied.   

• However, when k = 0.01, the performance of data-sharing robot 
localization is better when there are twelve robots compared to when there 
are six. Therefore, having more robots sharing data leads to a decrease in 
measurement errors.  

• Looking at robot 1, when k = 0.1, the ratio of errors is at 0.619. When k = 
0.5, the ratio of errors is at 0.485. It can thus be observed that the benefits 
of data sharing become more significant as the odometry errors increase. 

Previously, this thesis looked at the root-mean-square errors of the data-sharing 

robot localization at the end of the simulation. Next, this thesis looks at the performance of 

the data-sharing robot localization throughout the simulation. 0shows a single run of the 

simulation using input parameter configuration 2.  
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Figure 13.  Root-Mean-Square Error for Simulation Running Input Parameter 
Configuration 2 (Single Run Simulation) 

 



 55 

As can be observed from 0due to the sharing of the position data among the robots, 

the data-sharing robot localization achieved similar root-mean-square error between all the 

robots, whereas the individual robot odometry shows different root-mean-square errors. 

While the root-mean-square errors fluctuate over the course of the simulation, it is noted 

that the errors generally grow over time for both data-sharing robot localization and 

individual robot odometry. However, data-sharing robot localization results in less errors 

overall. 

Figures 14 through 19 show the root-mean-square errors of the simulation averaged 

over 1000 runs running the six different input parameter configurations. From the averaged 

data, it can be seen that all the errors are monotonically increasing. Even the data-sharing 

robot localization has an unbounded growth in root-mean-square errors. This is due to the 

lack of “ground truth,” which results in a drift of position data. Hence, over time, if the 

robot has no landmarks or any other means to zero out its errors during the operation, the 

errors in the localization data get too big to be ignored. 

It is to be noted that aside from configurations 1 and 4 where the individual robot 

odometry errors are very small, the growth of error for data-sharing robot localization is 

significantly smaller than the individual robot odometry. The reduction in errors is more 

significant in the robots that are travelling at a higher speed. By travelling at a higher speed, 

the robots covered a greater distance within the time frame of the simulation, and therefore 

accumulate more errors.  
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Figure 14.  Root-Mean-Square Error for Simulation Running Input Parameter 
Configuration 1 (1000 Runs Simulation) 
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Figure 15.  Root-Mean-Square Error for Simulation Running Input Parameter 
Configuration 2 (1000 Runs Simulation) 
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Figure 16.  Root-Mean-Square Error for Simulation Running Input Parameter 
Configuration 3  (1000 Runs Simulation) 
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Figure 17.  Root-Mean-Square Error for Simulation Running Input Parameter 
Configuration 4 (1000 Runs Simulation) 
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Figure 18.  Root-Mean-Square Error for Simulation Running Input Parameter 
Configuration 5 (1000 Runs Simulation) 
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Figure 19.  Root-Mean-Square Error for Simulation Running Input Parameter 
Configuration 6 (1000 Runs Simulation) 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

In many cities, the danger of disaster to the population is real. Once disaster strikes, 

there are the issues of manpower constraint and hazardous areas of operation. Under such 

circumstances, the use of autonomous unmanned systems for search and rescue operations 

can free up valuable manpower and remove the need to send humans into dangerous areas. 

However, in order for autonomous unmanned systems to operate meaningfully, the systems 

have to be able to perform robot localization reliably. That is to say, the autonomous 

unmanned systems need to know their pose at all times and in a variety of environments 

they may encounter in a disaster area. This thesis introduces a data-sharing robot 

localization technique that significantly reduces errors in individual robot odometry when 

there is no external infrastructure to help provide “ground truth.” 

Before proposing a feasible robot localization technique, systems engineering 

techniques are used to analyze the problem statement as well as the stakeholders. This helps 

to further define the needs and requirements of robot localization. The boundaries of the 

problem are discussed, which helps to examine the limitations and constraints of robot 

localization. These discussions highlight the important considerations when designing a 

valid concept of operation. It is through the concept of operation that the data-sharing robot 

localization is proposed. 

To solve the problem of robot localization, each robot measures its peers’ position 

and shares out the information. Each robot, armed with a point cloud of measurements of 

itself, computes a centroid to the points and feeds it to a Kalman filter. The Kalman filter 

tracks the state of the robot through a combination of predictions via kinematic equations 

and the measurements from the other robots. 

The technique is tested in a simulation developed using Python scripting language. 

The performance of the data-sharing robot localization is compared with the performance 

of individual robot odometry, which is simulated in the simulation. From the simulation, it 

is observed that data-sharing robot localization should not be used when individual robot 
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odometry errors are negligible, as the measurements themselves introduce errors. 

However, when the individual robot odometry errors are significant, data sharing can help 

to improve the performance. In fact, slower robots with fewer odometry errors can 

compensate for the odometry errors made by robots moving at a high speed. 

B. RECOMMENDATIONS 

The work of the thesis is a starting point in the exploration into collaborative 

robotics. In this thesis, the simulation makes several assumptions in view of the time 

constraint of the thesis work. However, further work can be done to address some of these 

assumptions, thereby producing a more accurate picture of the performance. The following 

are the recommendations for future work: 

• Model the communication losses and delays between the robots.  

• Model the line of sight of the robot when it is doing measurements of its 
peers. 

• Include obstacles into the simulation to better reflect the reality of the urban 
environment. 

• Model a wider range of sensors in the simulation to provide a view of what 
is necessary for effective robot localization by data sharing. 

These recommendations are with respect to the assumptions of the simulation. With 

regard to the robot localization technique, further work can also be done to improve the 

capabilities. For example, the data-sharing capabilities of the robot can be expanded to 

include obstacle-sensing information for each robot. This can be built on to produce 

collaborative simultaneous localization and mapping (SLAM). 

. 



 65 

APPENDIX.  SIMULATION SOURCE CODE 

The simulation is developed in Python scripting language. The simulation is split 

into six files, botsim.py, bots.py, kf.py, simmanager.py, defines.py, and automation.py. 

A. BOTSIM.PY 

The botsim.py file contains the code to the main simulation code. 

#!/usr/bin/python 
import pygame 
from pygame.locals import * 
import os 
import sys 
from bots import BOTS 
from defines import * 
from simmanager import SimManager 
import pickle 
 
def runSim(num): 
    x = 0 
    y = 0 
    os.environ[‘SDL_VIDEO_WINDOW_POS’] = “%d,%d” % (x,y) 
    sim = SimManager() 
    allSprites = pygame.sprite.RenderUpdates() 
    clock = pygame.time.Clock() 
 
    bot1 = BOTS((38,22,0),(0,0),(10,0), BOTSPEED, allSprites,’bot1’, sim.screenSurface) 
    allSprites.add(bot1) 
    bot2 = BOTS((30,10,0),(180,0),(-10,0),BOTSPEED, allSprites,’bot2’, 
sim.screenSurface) 
    allSprites.add(bot2) 
    bot3 = BOTS((45,20,0),(45,0),(-8,0),BOTSPEED, allSprites,’bot3’, sim.screenSurface) 
    allSprites.add(bot3) 
    bot4 = BOTS((60,35,0),(135,0),(15,0),BOTSPEED, allSprites,’bot4’, 
sim.screenSurface) 
    allSprites.add(bot4) 
    bot5 = BOTS((20,30,0),(90,0),(20,0), 1.2, allSprites,’bot5’, sim.screenSurface) 
    allSprites.add(bot5) 
    bot6 = BOTS((35,40,0),(0,0),(-8,0), 1.2, allSprites,’bot6’, sim.screenSurface) 
    allSprites.add(bot6) 
     
    “““bot7 = BOTS((38,10,0),(0,0),(10,0), BOTSPEED, allSprites,’bot7’, 
sim.screenSurface) 
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    allSprites.add(bot7) 
    bot8 = BOTS((30,22,0),(0,0),(10,0), BOTSPEED, allSprites,’bot8’, sim.screenSurface) 
    allSprites.add(bot8) 
    bot9 = BOTS((45,22,0),(0,0),(10,0), BOTSPEED, allSprites,’bot9’, sim.screenSurface) 
    allSprites.add(bot9) 
    bot10 = BOTS((60,10,0),(0,0),(10,0), BOTSPEED, allSprites,’bot10’, 
sim.screenSurface) 
    allSprites.add(bot10) 
    bot11 = BOTS((20,35,0),(0,0),(-10,0), 1.2, allSprites,’bot11’, sim.screenSurface) 
    allSprites.add(bot11) 
    bot12 = BOTS((38,35,0),(0,0),(-10,0), 1.2, allSprites,’bot12’, sim.screenSurface) 
    allSprites.add(bot12)”““ 
     
    if BEACONAVAIL: 
        p = BOTS((10,10,0),(0,0),(0,0), 0, allSprites,’beacon’, sim.screenSurface) 
        allSprites.add(p) 
 
 
 
 
    displayBot = bot1 
    displayBot.mark = 1 
 
    while 1: 
        #clock.tick(100) 
        if bot1.datacount > NUMRUNS and NUMRUNS > 0: 
            pygame.image.save(sim.windowScreen,.”/dat/run”+str(num)+.”png”)         
            if PICKLINGMSE: 
                file = open(.”/dat/data”+str(num)+.”pk,”“wb”) 
                pickleDic = {} 
                for sprite in allSprites: 
                    if sprite.ID != “beacon”: 
                        mse = {} 
                        mse[“ODOMSE”] = sprite.msepdlist 
                        mse[“SHAREMSE”] = sprite.mseppdlist 
                        mse[“ODOPOS”] = [sprite.px,sprite.py,sprite.pz] 
                        mse[“SHAREPOS”] = [sprite.mx,sprite.my,sprite.mz] 
                        mse[“ACTUALPOS”] = [sprite.x,sprite.y,sprite.z] 
                        pickleDic[sprite.ID] = mse 
                pickle.dump(pickleDic, file) 
                file.close() 
                break 
        else: 
            if RENDERING: 
                allSprites.clear(sim.botSurface, sim.screenSurface) 
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            for sprite in allSprites: 
                sprite.updateBotMeas() 
            for sprite in allSprites: 
                sprite.updatePercep() 
            if RUNKF: 
                for sprite in allSprites: 
                    sprite.updateKalman() 
            allSprites.update() 
             
            if RENDERING: 
                sim.renderText(len(allSprites), displayBot) 
                sim.render(allSprites) 
 
        for event in pygame.event.get(): 
            if event.type == QUIT: 
                sys.exit() 
            elif event.type == KEYDOWN: 
                if event.key == K_q: 
                    pygame.image.save(sim.windowScreen,.”/dat/run.png”) 
                     
                    if PICKLINGMSE: 
                        file = open(.”/dat/data.pk,”“wb”) 
                        pickleDic = {} 
                        for sprite in allSprites: 
                            if sprite.ID != “beacon”: 
                                mse = {} 
                                mse[“ODOMSE”] = sprite.msepdlist 
                                mse[“SHAREMSE”] = sprite.mseppdlist 
                                mse[“ODOPOS”] = [sprite.px,sprite.py,sprite.pz] 
                                mse[“SHAREPOS”] = [sprite.mx,sprite.my,sprite.mz] 
                                mse[“ACTUALPOS”] = [sprite.x,sprite.y,sprite.z]                                 
                                pickleDic[sprite.ID] = mse 
                        pickle.dump(pickleDic, file) 
                        file.close() 
                     
                    sys.exit() 
                elif event.key == K_1: 
                    displayBot.mark = 0 
                    displayBot = bot1 
                    displayBot.mark = 1 
                elif event.key == K_2: 
                    displayBot.mark = 0 
                    displayBot = bot2 
                    displayBot.mark = 1 
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                elif event.key == K_3: 
                    displayBot.mark = 0 
                    displayBot = bot3 
                    displayBot.mark = 1 
                elif event.key == K_4: 
                    displayBot.mark = 0 
                    displayBot = bot4 
                    displayBot.mark = 1 
                elif event.key == K_5: 
                    displayBot.mark = 0 
                    displayBot = bot5 
                    displayBot.mark = 1 
                elif event.key == K_6: 
                    displayBot.mark = 0 
                    displayBot = bot6 
                    displayBot.mark = 1 
 
if __name__ == ‘__main__’: 
    runSim(999) 

B. BOTS.PY 

The bots.py file contains the class that defines the robot behaviors. 

import pygame 
from defines import * 
import numpy as np 
from kf import KalmanFilter 
import random 
 
class BOTS(pygame.sprite.Sprite): 
    def __init__(self,center,direction,steer,speed,spriteGrp,ID, screenSurface): 
        pygame.sprite.Sprite.__init__(self) 
        self.screenSurface = screenSurface 
        self.image = pygame.Surface((30,30)) 
        self.image.fill((30,30,30,0)) 
        self.direction = direction[0] 
        self.pdirection = direction[0] 
        self.pitch = direction[1] 
        self.ppitch = direction[1] 
        self.r = 15 
        self.image = self.image.convert_alpha() 
        self.rect = self.image.get_rect() 
        self.rect.center = (center[0],center[1]) 
        self.mark = 0 
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        self.x = center[0] 
        self.y = center[1] 
        self.z = center[2] 
        self.px = self.x 
        self.py = self.y 
        self.pz = self.z 
        self.ppx = self.x 
        self.ppy = self.y 
        self.ppz = self.z         
        self.pmx = self.x 
        self.pmy = self.y 
        self.pmz = self.z 
        self.mx = self.x 
        self.my = self.y 
        self.mz = self.z 
        self.kfx = self.x 
        self.kfy = self.y 
        self.kfz = self.z 
        self.spriteGrp = spriteGrp 
        self.ID = ID 
        self.botList = {} 
        self.steer = steer[0] 
        self.pitchsteer = steer[1] 
        self.v = speed 
        self.msepx = 0 
        self.msepy = 0 
        self.msepz = 0 
        self.mseppx = 0 
        self.mseppy = 0 
        self.mseppz = 0 
        self.msepd = 0 
        self.mseppd = 0 
        self.msepdlist = [] 
        self.mseppdlist = [] 
        self.datacount = 0 
        self.drawBot() 
        t = TIMEDELTAPERSTEP 
        A = np.matrix([\ 
                [1,t,0,0,0,0],\ 
                [0,1,0,0,0,0],\ 
                [0,0,1,t,0,0],\ 
                [0,0,0,1,0,0],\ 
                [0,0,0,0,1,t],\ 
                [0,0,0,0,0,1]\ 
                ]) 
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        H = np.eye(6) 
        T = TIMEDELTAPERSTEP**2 / 2.0 
        B = np.matrix([\ 
                [T,0,0],\ 
                [t,0,0],\ 
                [0,T,0],\ 
                [0,t,0],\ 
                [0,0,T],\ 
                [0,0,t]\ 
                ]) 
        Q = np.eye(6)*KFPROCESSERR 
        R = np.eye(6)*KFMEASUREERR 
        Vx = self.v * np.cos(np.deg2rad(self.direction)) * np.cos(np.deg2rad(self.pitch)) 
        Vy = self.v * np.sin(np.deg2rad(self.direction)) * np.cos(np.deg2rad(self.pitch)) 
        Vz = self.v * np.sin(np.deg2rad(self.pitch)) 
        xhat = np.matrix([\ 
                [self.x],\ 
                [Vx],\ 
                [self.y],\ 
                [Vy],\ 
                [self.z],\ 
                [Vz]\ 
                ]) 
        P = np.eye(6) 
        self.filter = KalmanFilter(A,B,H,xhat,P,Q,R) 
 
 
    def getbotList(self): 
        return self.botList 
    def getID(self): 
        return self.ID 
    def getx(self): 
        return self.x 
    def gety(self): 
        return self.y 
    def getz(self): 
        return self.z         
    def getpos(self): 
        return np.matrix([self.x, self.y, self.z]) 
    def getpx(self): 
        return self.px 
    def getpy(self): 
        return self.py 
    def getpz(self): 
        return self.pz 



 71 

    def getppos(self): 
        return np.matrix([self.px, self.py, self.pz]) 
    def getpppos(self): 
        return np.matrix([self.ppx, self.ppy, self.ppz]) 
    def getdir(self): 
        return self.direction 
    def getpitch(self): 
        return self.pitch 
    def getpdir(self): 
        return self.pdirection 
         
    def drawBot(self): 
        # Determine points of triangle representing bot. 
        frontPt = [15+int(self.r*np.cos(np.deg2rad(self.direction))),\ 
                15+int(self.r*np.sin(np.deg2rad(self.direction)))] 
        leftPt = [15+int(self.r*np.cos(np.deg2rad(self.direction+150))),\ 
                15+int(self.r*np.sin(np.deg2rad(self.direction+150)))] 
        rightPt = [15+int(self.r*np.cos(np.deg2rad(self.direction-150))),\ 
                15+int(self.r*np.sin(np.deg2rad(self.direction-150)))] 
        self.image.fill((30,30,30,0)) 
        if self.mark: 
            pygame.draw.polygon(self.image,COLORRED,[frontPt,leftPt,rightPt],0) 
        else: 
            pygame.draw.polygon(self.image,COLORBLUE,[frontPt,leftPt,rightPt],0) 
 
    def updateActualPos(self): 
        # delta xy of actual position 
        varianceX = ODOERR**2 * np.abs(self.v * \ 
                np.cos(np.deg2rad(self.direction)) * \ 
                np.cos(np.deg2rad(self.pitch)) * \ 
                TIMEDELTAPERSTEP) 
        varianceY = ODOERR**2 * np.abs(self.v * \ 
                np.sin(np.deg2rad(self.direction)) * \ 
                np.cos(np.deg2rad(self.pitch)) * \ 
                TIMEDELTAPERSTEP) 
        varianceZ = ODOERR**2 * np.abs(self.v * \ 
                np.sin(np.deg2rad(self.pitch)) * \ 
                TIMEDELTAPERSTEP) 
                 
        dx = self.v * \ 
                np.cos(np.deg2rad(self.direction)) * \ 
                np.cos(np.deg2rad(self.pitch)) * \ 
                TIMEDELTAPERSTEP + \ 
                random.gauss(0,np.sqrt(varianceX)) 
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        dy = self.v * \ 
                np.sin(np.deg2rad(self.direction)) * \ 
                np.cos(np.deg2rad(self.pitch)) * \ 
                TIMEDELTAPERSTEP + \ 
                random.gauss(0,np.sqrt(varianceY)) 
 
        dz = self.v * \ 
                np.sin(np.deg2rad(self.pitch)) * \ 
                TIMEDELTAPERSTEP + \ 
                random.gauss(0,np.sqrt(varianceZ)) 
 
        # update new actual position 
        self.x += dx 
        self.y += dy 
        self.z += dz 
     
    def updatePerceivedPos(self): 
        # delta xy of erroneous dead reckoning 
        pdx = self.v * \ 
                np.cos(np.deg2rad(self.pdirection)) * \ 
                np.cos(np.deg2rad(self.ppitch)) * \ 
                TIMEDELTAPERSTEP 
        pdy = self.v * \ 
                np.sin(np.deg2rad(self.pdirection)) * \ 
                np.cos(np.deg2rad(self.ppitch)) * \ 
                TIMEDELTAPERSTEP 
        pdz = self.v * \ 
                np.sin(np.deg2rad(self.ppitch)) * \ 
                TIMEDELTAPERSTEP                 
        # update new perceived position 
        self.px += pdx 
        self.py += pdy 
        self.pz += pdz 
        # update data shared and kalman filtered perceived position with new perceived delta 
        self.ppx = self.ppx + pdx 
        self.ppy = self.ppy + pdy 
        self.ppz = self.ppz + pdz     
         
    def updateDirections(self): 
        # update new actual direction 
         
        self.pdirection += self.steer * TIMEDELTAPERSTEP 
        self.ppitch += self.pitchsteer * TIMEDELTAPERSTEP 
         
        varianceDir = ODODIRERR**2 * np.abs(self.steer * TIMEDELTAPERSTEP) 
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        variancePitch = ODOPITCHERR**2 * np.abs(self.pitchsteer * 
TIMEDELTAPERSTEP) 
         
        # update new perceived erroneous direction 
        self.direction = self.pdirection + \ 
                random.gauss(0,np.sqrt(varianceDir)) 
                 
        self.pitch = self.ppitch + \ 
                random.gauss(0,np.sqrt(variancePitch))         
     
    def renderPos(self): 
        # update new position of Bot pixel position (pixels are integer only) 
        # calculated x and y position are float for more precision 
        dx = self.x - self.rect.centerx / PIXELSTOMETER 
        dy = self.y - self.rect.centery / PIXELSTOMETER 
        self.rect.move_ip(int(dx * PIXELSTOMETER), int(dy * PIXELSTOMETER))     
     
    def renderActualPos(self): 
            # Dot a pixel of actual path 
        self.screenSurface.set_at((int(self.x * PIXELSTOMETER), int(self.y * 
PIXELSTOMETER)),(100,100,100,255)) 
         
    def renderOdometryPos(self): 
        # Dot a pixel of dead reckoning only perceived position 
        self.screenSurface.set_at((int(self.px * PIXELSTOMETER), int(self.py * 
PIXELSTOMETER)),(255,255,255,255)) 
    def renderDataSharePos(self): 
        # Dot a pixel of data shared and Kalman filtered perceived position 
        self.screenSurface.set_at((int(self.mx * PIXELSTOMETER), int(self.my * 
PIXELSTOMETER)),(0,255,255,255)) 
         
    def renderCloud(self): 
        if RENDERCLOUD and self.mark: 
            for sprite in self.spriteGrp: 
                if sprite != self:             
                    if sprite.getbotList().has_key(self.ID): 
                        x = sprite.getbotList()[self.ID][0] 
                        y = sprite.getbotList()[self.ID][1] 
                        self.screenSurface.set_at((int(x * PIXELSTOMETER), int(y * 
PIXELSTOMETER)),COLORORANGE) 
 
         
    def update(self): 
        self.drawBot() 
        self.updateDirections() 
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        self.updateActualPos() 
        self.updatePerceivedPos() 
        self.renderPos() 
        self.renderActualPos() 
        self.renderOdometryPos() 
        self.renderDataSharePos() 
        self.renderCloud() 
        self.measMSE() 
 
    def measMSE(self): 
        self.msepx = (self.msepx * self.datacount +\ 
                (self.x - self.px)**2)/(self.datacount + 1) 
        self.msepy = (self.msepy * self.datacount +\ 
                (self.y - self.py)**2)/(self.datacount + 1) 
        self.msepz = (self.msepz * self.datacount +\ 
                (self.z - self.pz)**2)/(self.datacount + 1)                 
        self.msepd = (self.msepd * self.datacount +\ 
                np.linalg.norm(np.matrix([\ 
                        self.x - self.px, \ 
                        self.y - self.py, \ 
                        self.z - self.pz]))**2) / \ 
                (self.datacount + 1) 
         
        self.mseppx = (self.mseppx * self.datacount +\ 
                (self.x - self.mx)**2)/(self.datacount + 1) 
        self.mseppy = (self.mseppy * self.datacount +\ 
                (self.y - self.my)**2)/(self.datacount + 1) 
        self.mseppz = (self.mseppz * self.datacount +\ 
                (self.z - self.mz)**2)/(self.datacount + 1)                   
        self.mseppd = (self.mseppd * self.datacount +\ 
                np.linalg.norm(np.matrix([self.x - self.ppx, \ 
                        self.y - self.ppy, \ 
                        self.z - self.ppz]))**2) / \ 
                (self.datacount + 1)                 
                 
        self.datacount += 1 
        if PICKLINGMSE: 
            self.msepdlist.append(self.msepd) 
            self.mseppdlist.append(self.mseppd)             
         
    def updateBotMeas(self): 
        “““calculate all the position estimated from data sharing”““ 
        self.botList = {} 
        for sprite in self.spriteGrp: 
            if sprite != self: 
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                # get vector between 2 bots 
                diffmat = sprite.getpos() - self.getpos() 
                 
                # get actual distance between 2 bots 
                dist = np.linalg.norm(diffmat) 
                if dist < MEASUREMENTLIMIT: 
                                 
                    # get actual bearing between 2 bots 
                    bearing = np.rad2deg(np.arctan2(diffmat[0,1],diffmat[0,0])) 
                    elevation = np.rad2deg(np.arcsin(diffmat[0,2] / np.linalg.norm(diffmat))) 
                     
                    # add Gaussian error to bearing between 2 bots 
                    if VARMEASUREERR: 
                        accuracyFound = 0 
                        accuIter = iter(BEARINGERR) 
                        while not accuracyFound: 
                            spec = accuIter.next() 
                            if dist < spec[0]: 
                                bearingAccu = spec[1] 
                                elevationAccu = spec[2] 
                                accuracyFound = 1                     
                        bearing += random.uniform(-bearingAccu,bearingAccu) 
                        elevation += random.uniform(-elevationAccu,elevationAccu) 
                    else:              
                        bearing += random.uniform(-FIXBEARINGERR,FIXBEARINGERR) 
                        elevation += random.uniform(-
FIXELEVATIONERR,FIXELEVATIONERR) 
                         
                    # add Gaussian error to distance between 2 bots 
                    if VARMEASUREERR: 
                        accuracyFound = 0 
                        accuIter = iter(DISTERR) 
                        while not accuracyFound: 
                            spec = accuIter.next() 
                            if dist < spec[0]: 
                                accu = spec[1] 
                                accuracyFound = 1 
                        dist += random.uniform(-accu,accu) 
                    else: 
                        dist += random.uniform(-FIXDISTERR,FIXDISTERR) 
                         
                    # calculate estimated position of observed bot based on 
                    # data shared and kalman filtered perceived position of observer 
                    # using erroneous distance measurement and erroneous bearing measurement 
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                    x = self.ppx + dist*np.cos(np.deg2rad(bearing))  
                    y = self.ppy + dist*np.sin(np.deg2rad(bearing)) 
                    z = self.ppz + dist*np.sin(np.deg2rad(elevation)) 
                     
                    # observer maintain a list of estimated positions of observed bots 
                    self.botList[sprite.getID()] = [x, y, z, dist] 
 
                     
    def updatePercep(self): 
        “““calculate better estimate of self position by obtaining 
        list of position estimate of self from all the other observer 
        bots the centroid of the point cloud is calculated and used 
        as new estimate of self position”““ 
        if self.v == 0: 
            pass 
        else: 
            sumx = 0 
            sumy = 0 
            sumz = 0 
            count = 0 
            maxDist = 0 
            for sprite in self.spriteGrp: 
                if sprite != self:             
                    if sprite.getbotList().has_key(self.ID): 
                        if sprite.getbotList()[self.ID][3] > maxDist: 
                            maxDist = sprite.getbotList()[self.ID][3] 
            for sprite in self.spriteGrp: 
                if sprite != self:             
                    # if observer bot has an estimate of self in  
                    # it’s estimate list add point to point cloud 
                    if sprite.getbotList().has_key(self.ID): 
                        x = sprite.getbotList()[self.ID][0] 
                        y = sprite.getbotList()[self.ID][1] 
                        z = sprite.getbotList()[self.ID][2] 
                        dist = sprite.getbotList()[self.ID][3] 
                        if WEIGHTEDCENTROID: 
                            sumx += x * (maxDist / dist**WEIGHTINTENSITY) 
                            sumy += y * (maxDist / dist**WEIGHTINTENSITY) 
                            sumz += z * (maxDist / dist**WEIGHTINTENSITY) 
                            count += 1.0 * (maxDist / dist**WEIGHTINTENSITY)                             
                        else: 
                            sumx += x 
                            sumy += y 
                            sumz += z 
                            count += 1.0             
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            # store previous measured position 
            self.pmx = self.mx 
            self.pmy = self.my 
            self.pmz = self.mz 
             
            if count > 0: 
                self.mx = sumx / count * 1.0 
                self.my = sumy / count * 1.0 
                self.mz = sumz / count * 1.0 
            else: 
                self.mx = self.ppx 
                self.my = self.ppy 
                self.mz = self.ppz 
                             
    def updateKalman(self): 
        if self.v > 0: 
            radD = np.deg2rad(self.pdirection) 
            radSteer = np.deg2rad(self.steer * TIMEDELTAPERSTEP) 
            radPitch =  np.deg2rad(self.ppitch) 
            radPitchSteer = np.deg2rad(self.pitchsteer * TIMEDELTAPERSTEP) 
            currVectx = self.v * \ 
                    np.cos(radD + radSteer) * \ 
                    np.cos(radPitch + radPitchSteer) 
            prevVectx = self.v * \ 
                    np.cos(radD) * \ 
                    np.cos(radPitch) 
            currVecty = self.v * \ 
                    np.sin(radD + radSteer) * \ 
                    np.cos(radPitch + radPitchSteer) 
            prevVecty = self.v * \ 
                    np.sin(radD) * \ 
                    np.cos(radPitch) 
            currVectz = self.v * \ 
                    np.sin(radPitch + radPitchSteer) 
            prevVectz = self.v * \ 
                    np.sin(radPitch) 
            accX = (currVectx - prevVectx) / TIMEDELTAPERSTEP 
            accY = (currVecty - prevVecty) / TIMEDELTAPERSTEP 
            accZ = (currVectz - prevVectz) / TIMEDELTAPERSTEP             
            u = np.matrix([\ 
                    [accX],\ 
                    [accY],\ 
                    [accZ]\ 
                    ])            
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            m = np.matrix([\ 
                    [self.mx],\ 
                    [(self.mx - self.pmx) / TIMEDELTAPERSTEP],\ 
                    [self.my],\ 
                    [(self.my - self.pmy) / TIMEDELTAPERSTEP],\ 
                    [self.mz],\ 
                    [(self.mz - self.pmz) / TIMEDELTAPERSTEP]\ 
                    ]) 
             
            self.filter.Step(u,m) 
             
            currState = self.filter.GetCurrState() 
            self.kfx = currState[0,0] 
            self.kfy = currState[2,0] 
            self.kfz = currState[4,0] 
            self.ppx = self.kfx 
            self.ppy = self.kfy 
            self.ppz = self.kfz 
            self.mx = self.kfx 
            self.my = self.kfy 
            self.mz = self.kfz 

C. KF.PY 

The kf.py file contains the code to implement the Kalman filter. 

import numpy as np 
 
class KalmanFilter: 
    def __init__(self,A, B, H, x, P, Q, R): 
        self.A = A 
        self.B = B 
        self.H = H 
        self.currState = x 
        self.currProb = P 
        self.Q = Q 
        self.R = R 
    def GetCurrState(self): 
        return self.currState 
    def Step(self,u,m): 
        self.u = u 
        predState = self.A * self.currState + self.B * self.u 
        self.predState = predState 
        predProb = (self.A * self.currProb) * np.transpose(self.A) + self.Q 
        y = m - self.H * predState 
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        S = self.H * predProb * np.transpose(self.H) + self.R 
        K = predProb * np.transpose(self.H) * np.linalg.inv(S) 
        self.currState = predState + K * y 
        size = self.currProb.shape[0] 
        self.currProb = (np.eye(size)- K * self.H) * predProb 
 

D. SIMMANAGER.PY 

The simmanager.py file contains the graphics handler for the simulation. 

import pygame 
from pygame.locals import * 
from defines import * 
 
class SimManager: 
 
    def __init__(self): 
        pygame.init() 
        if RENDERING: 
            self.windowScreen = pygame.display.set_mode((1600, 900), FULLSCREEN) 
            pygame.display.set_caption(‘Orbits!’) 
            self.screenSurface = pygame.Surface((1400,900)) 
            self.screenSurface = self.windowScreen.convert() 
            self.screenSurface.fill((30, 30, 30)) 
            self.botSurface = pygame.Surface((1400,900)) 
            self.menuSurface = pygame.Surface((200,900)) 
            self.menuSurface.fill(COLORGREEN) 
            self.windowScreen.blit(self.screenSurface,(200,0)) 
            self.windowScreen.blit(self.menuSurface, (0,0)) 
            pygame.display.flip() 
            self.fontObj = pygame.font.Font(‘freesansbold.ttf’,18) 
        else: 
            self.windowScreen = pygame.display.set_mode((1, 1)) 
            self.screenSurface = pygame.Surface((1400,900)) 
         
    def render(self, allSprites): 
        self.botSurface.blit(self.screenSurface,(0,0)) 
        allSprites.draw(self.botSurface) 
        self.windowScreen.blit(self.botSurface,(200,0)) 
        self.windowScreen.blit(self.menuSurface,(0,0)) 
         
        pygame.draw.line(self.windowScreen, COLORWHITE, (300,10), 
(300+10*PIXELSTOMETER,10), 5) 
        pygame.display.flip() 
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    def renderText(self, numSprites, bot): 
        self.menuSurface.fill(COLORGREEN, pygame.Rect(0,0,200,380)) 
        textline = 20 
        self.menuSurface.blit(self.fontObj.render(“Number of bots,” True, COLORBLACK), 
(10,textline)) 
        textline += 20 
        self.menuSurface.blit(self.fontObj.render(str(numSprites), True, COLORBLACK), 
(15,textline)) 
        textline += 40 
        self.menuSurface.blit(self.fontObj.render(bot.ID +” Data,” True, COLORBLACK), 
(10,textline)) 
        textline += 30 
        self.menuSurface.blit(self.fontObj.render(“Robot speed m/s:,” True, 
COLORBLACK), (10,textline)) 
        textline += 20 
        self.menuSurface.blit(self.fontObj.render(str(bot.v), True, COLORBLACK), 
(15,textline)) 
        textline += 20 
        self.menuSurface.blit(self.fontObj.render(“Robot steer deg/s,” True, 
COLORBLACK), (10,textline)) 
        textline += 20 
        self.menuSurface.blit(self.fontObj.render(str(bot.steer), True, COLORBLACK), 
(15,textline)) 
         
        textline += 30 
        self.menuSurface.blit(self.fontObj.render(“Odometry:,” True, COLORBLACK), 
(10,textline)) 
        textline += 30 
        # self.menuSurface.blit(self.fontObj.render(“Mean Sq Err X:,” True, 
COLORBLACK), (10,textline)) 
        # textline += 20 
        # self.menuSurface.blit(self.fontObj.render(str(bot.msepx), True, COLORBLACK), 
(15,textline))     
        # textline += 20 
        # self.menuSurface.blit(self.fontObj.render(“Mean Sq Err Y:,” True, 
COLORBLACK), (10,textline)) 
        # textline += 20 
        # self.menuSurface.blit(self.fontObj.render(str(bot.msepy), True, COLORBLACK), 
(15,textline)) 
        # textline += 20 
        self.menuSurface.blit(self.fontObj.render(“Mean Sq Err dist:,” True, 
COLORBLACK), (10,textline)) 
        textline += 20 
        self.menuSurface.blit(self.fontObj.render(str(bot.msepd), True, COLORBLACK), 
(15,textline))         
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        textline += 40 
        self.menuSurface.blit(self.fontObj.render(“Data sharing:,” True, COLORBLACK), 
(10,textline)) 
        textline += 30 
        # self.menuSurface.blit(self.fontObj.render(“Mean Sq Err X:,” True, 
COLORBLACK), (10,textline)) 
        # textline += 20 
        # self.menuSurface.blit(self.fontObj.render(str(bot.mseppx), True, COLORBLACK), 
(15,textline))     
        # textline += 20 
        # self.menuSurface.blit(self.fontObj.render(“Mean Sq Err Y:,” True, 
COLORBLACK), (10,textline)) 
        # textline += 20 
        # self.menuSurface.blit(self.fontObj.render(str(bot.mseppy), True, COLORBLACK), 
(15,textline)) 
        # textline += 20 
        self.menuSurface.blit(self.fontObj.render(“Mean Sq Err dist:,” True, 
COLORBLACK), (10,textline)) 
        textline += 20 
        self.menuSurface.blit(self.fontObj.render(str(bot.mseppd), True, COLORBLACK), 
(15,textline))  

E. DEFINES.PY 

The defines.py file contains the input parameters to the simulation as well as the 

options for configuring the simulation. 

import pygame 
 
RENDERING = 0 
 
FLYING = 0 
 
BEACONAVAIL = 0 
NUMRUNS = 1000 
 
MEASUREMENTLIMIT = 30.0 
 
BOTSPEED = 0.6 
ODODIRERR = 0.1 
ODOERR = 0.5 
if FLYING: 
    ODOPITCHERR = 0.1 
else: 
    ODOPITCHERR = 0.0 
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PIXELSTOMETER = 20.0 
TIMEDELTAPERSTEP = 0.1 
 
WEIGHTEDCENTROID = 0 
WEIGHTINTENSITY = 2.0 
 
VARMEASUREERR = 1 
if FLYING: 
    BEARINGERR = [[10,0.25,0.25],[MEASUREMENTLIMIT,0.25,0.25]] 
    FIXELEVATIONERR = 0.25 
else: 
    BEARINGERR = [[10,0.25,0],[MEASUREMENTLIMIT,0.25,0]] 
    FIXELEVATIONERR = 0.0 
DISTERR = [[10,0.01],[MEASUREMENTLIMIT,0.03]] 
 
FIXDISTERR = 0.03 
FIXBEARINGERR = 0.25 
 
RUNKF = 1 
KFPROCESSERR = 0.5 
KFMEASUREERR = 1.0 
 
RENDERCLOUD = 0 
 
PICKLINGMSE = 1 
 
COLORRED = pygame.Color(255,0,0) 
COLORORANGE = pygame.Color(255,180,0) 
COLORGREEN = pygame.Color(0,255,0) 
COLORPEPPERMINT = pygame.Color(0,255,100) 
COLORBLUE = pygame.Color(0,0,255) 
COLORWHITE = pygame.Color(255,255,255) 
COLORBLACK = pygame.Color(0,0,0) 

F. AUTOMATE.PY 

The automate.py file is a helper file to assist in running multiple simulation runs 

automatically. 

import botsim 
import time 
 
for i in range(1000): 
    start = time.time() 
    botsim.runSim(i) 
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    print “Run: “+str(i)+,” Dur: “+str(time.time()-start) 
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